Preferred Language
Articles
/
nYaQs4YBIXToZYALQrJi
Response of R.C. Barriers Subjected to TNT Explosion Blast Loading
...Show More Authors

Reinforced concrete barriers have been commonly used in protecting the important building because the response of R.C. barriers subjected to blast loading is practically more acceptable than other materials used to build the barriers. In this study, the response of R.C. barriers was detected due to the blast effects caused by two charge weights (50 kg and 400 kg); ANSYS 14 was used to simulate the problem. A horizontal distance of 2 m between the explosive TNT charge and the front face of wall was taken. The pressure on the front face of the concrete barriers was measured at three levels. The R.C. barrier was entirely damaged when subjected to the blast effects caused by 400 kg TNT explosion bomb. However, the 50 kg TNT charge had a minor damaging effect on the same R.C. barrier.

Publication Date
Thu Feb 28 2019
Journal Name
The Open Civil Engineering Journal
Experimental Investigation of Skirt Footing Subjected to Lateral Loading
...Show More Authors
Background:

The skirt foundation is one of the powerful types of foundations to resist the lateral loads produced from natural forces, such as earthquakes and wind action, or from the type of structures, such as oil platforms and offshore wind turbines.

Objective and Methodology:

This research experimentally investigated the response of skirted footing resting on sandy soil of different states to lateral applications of loads on a small-scale physical model manufactured for this purpose. The parameters studied are the dista

... Show More
View Publication
Crossref (2)
Crossref
Publication Date
Sat Oct 01 2016
Journal Name
Journal Of Engineering
Numerical and Experimental Analysis of Aircraft Wing Subjected to Fatigue Loading
...Show More Authors

This study deals with the aircraft wing analysis (numerical and experimental) which subjected to fatigue loading in order to analyze the aircraft wing numerically by using ANSYS 15.0 software and experimentally by using loading programs which effect on fatigue test specimens at laboratory to estimate life of used metal (aluminum alloy 7075-T651) the wing metal and compare between numerical and experimental work, as well as to formulate an experimental mathematical model which may find safe estimate for metals and most common alloys that are used to build aircraft wing at certain conditions. In experimental work, a (34) specimen of (aluminum alloy 7075-T651) were tested using alternating bending fatigue machine rig. The t

... Show More
View Publication Preview PDF
Publication Date
Sat Dec 01 2018
Journal Name
Al-khwarizmi Engineering Journal
Optimum Design of Stiffened Plate-Structure Subjected to Static Loading
...Show More Authors

The field of structural optimization (optimal design) has grown rapidly over the past decades with many different optimization methods that could be used to produce a structure of minimum weight. This research deals with two aspects, in the first, a general numerical technique based on the finite element analysis and it suggests to investigate the preliminary behavior of metal stiffened plate under action of static load environment. The technique was included a finite element model of the structures using high- order isoparimetric plate elements to be used to create a certain models to obtain their optimum design. The models are characterized such that, each model is builded using different types of stiffener configuration. The second as

... Show More
View Publication Preview PDF
Publication Date
Thu Oct 01 2020
Journal Name
International Journal Of Engineering
Vertical and Lateral Displacement Response of Foundation to Earthquake Loading
...Show More Authors

Risks are confronting the foundations of buildings and structures when exposed to earthquakes which leads to high displacements that may cause the failure of the structures. This research elaborates numerically the effect of the earthquake on the vertical and lateral displacement of footing resting on the soil. The thickness of the footing and depth of soil layer below the footing was taken as (0.5, 1.0, and 2.0 m) and (10, 20 and 40m), respectively. The stiffness ratio of soil to footing was also elaborated at 0.68, 0.8, 1.0, and 1.7. The results showed an increase in the verticle displacement of footing as the duration of the earthquake increases. The increase of soil layer thickness below the footing leads to a reduction in the vertical

... Show More
View Publication
Crossref (1)
Clarivate Crossref
Publication Date
Thu Dec 15 2022
Journal Name
Engineering, Technology & Applied Science Research (etasr)
Numerical Modeling of a Pile Group Subjected to Seismic Loading Using the Hypoplasticity Model
...Show More Authors

Various simple and complicated models have been utilized to simulate the stress-strain behavior of the soil. These models are used in Finite Element Modeling (FEM) for geotechnical engineering applications and analysis of dynamic soil-structure interaction problems. These models either can't adequately describe some features, such as the strain-softening of dense sand, or they require several parameters that are difficult to gather by conventional laboratory testing. Furthermore, soils are not completely linearly elastic and perfectly plastic for the whole range of loads. Soil behavior is quite difficult to comprehend and exhibits a variety of behaviors under various circumstances. As a result, a more realistic constitutive model is

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Tue Dec 05 2023
Journal Name
Engineering, Technology & Applied Science Research
Theoretical Analysis of Composite RC Beams with Pultruded GFRP Beams subjected to Impact Loading
...Show More Authors

Glass Fiber Reinforced Polymer (GFRP) beams have gained attention due to their promising mechanical properties and potential for structural applications. Combining GFRP core and encasing materials creates a composite beam with superior mechanical properties. This paper describes the testing encased GFRP beams as composite Reinforced Concrete (RC) beams under low-velocity impact load. Theoretical analysis was used with practical results to simulate the tested beams' behavior and predict the generated energies during the impact loading. The impact response was investigated using repeated drops of 42.5 kg falling mass from various heights. An analysis was performed using accelerometer readings to calculate the generalized inertial load. The in

... Show More
View Publication
Publication Date
Wed May 01 2019
Journal Name
Proceedings Of International Structural Engineering And Construction
FLEXURAL DUCTILITY OF STRUCTURAL CONCRETE MEMBERS SUBJECTED TO LIMITED CYCLES OF REPEATED LOADING
...Show More Authors

For structural concrete members that may expose to serious earthquake, overload or accident impact, the design of ductility must be given the same importance as the flexural strength. The aim of this investigation is to study the change in ductility of structural concrete flexural members during their exposure to limited cycles of repeated loading. Twenty full-scale beam specimens have been fabricated in to two identical groups; each group consisted of ten specimens. The first group was tested under monotonic static loading to failure and regarded as control beams, while the specimens of the second group were subjected to ten cycles of repeated loading with constant load interval, which ranged between 40% and 60% of ultimate load. S

... Show More
View Publication
Scopus Crossref
Publication Date
Wed May 01 2019
Journal Name
Proceedings Of International Structural Engineering And Construction
FLEXURAL DUCTILITY OF STRUCTURAL CONCRETE MEMBERS SUBJECTED TO LIMITED CYCLES OF REPEATED LOADING
...Show More Authors

For structural concrete members that may expose to serious earthquake, overload or accident impact, the design of ductility must be given the same importance as the flexural strength. The aim of this investigation is to study the change in ductility of structural concrete flexural members during their exposure to limited cycles of repeated loading. Twenty full-scale beam specimens have been fabricated in to two identical groups; each group consisted of ten specimens. The first group was tested under monotonic static loading to failure and regarded as control beams, while the specimens of the second group were subjected to ten cycles of repeated loading with constant load interval, which ranged between 40% and 60% of ultimate load. S

... Show More
Crossref
Publication Date
Thu Sep 01 2016
Journal Name
Journal Of Engineering
Response of Laced Reinforced Concrete One Way Slab to Repeated Loading
...Show More Authors

Test results of nine reinforced concrete one way slab with and without lacing reinforcement are reported. The tests were designed to study the effect of the lacing reinforcement on the flexural response of one way slabs. The test parameters were considered is the lacing steel ratios of (0, 0.0025, 0.0045, and 0.0065), flexural steel ratios of (0.0025, 0.0045, and 0.0065) and span to the effective depth ratios of (11, 13, and 16). Two specimens had no lacing reinforcement and the remaining seven specimens had the lacing reinforcement. Four point bending test were carried out, one of the specimens was tested under the static load applied gradually up to failure and the other specimens were tested under repeated load (5 cyc

... Show More
View Publication Preview PDF
Publication Date
Sat Aug 01 2020
Journal Name
Iop Conference Series: Materials Science And Engineering
Experimental Investigation of Under Reamed Pile Subjected to Dynamic Loading in Sandy Soil
...Show More Authors
Abstract<p>This paper presents an experimental study between uniform pile and different types of under-reamed pile, single bulb. The under-reamed piles are piles with enlarged bases that are suitable to resist considerable movement of the ground, filed up ground, soft clay, and loose sand which have advantages to increase the soil strength, uplift capacity, and decrease the displacement. In the present study, there are experimental analyze to performance the suitable under-reamed type under sinusoidal load from vertical vibration (motor-oscillator was mounted directly on the pile cap. The main finding of this work is that the pile capacity increases with the ream and that all stress values of so</p> ... Show More
View Publication
Scopus (3)
Crossref (3)
Scopus Crossref