Mahmoud Khedher Agha, Tenured Faculty at the Department of Agricultural Machines and Equipment, University of Baghdad. Mahmoud does research in Agricultural Engineering. Their current projects 'cold storage control', 'seed sorting", 'solar drying system'. and post-harvest technology research
Ph.D. Agricultural & Biological Engineering 2014 University of Florida, Gainesville, FL
M.Sc. Agricultural Mechanization 2001 University of Baghdad, Baghdad, Iraq
B.Sc. Agricultural Machinery 1998 University of Baghdad, Baghdad, Iraq
Tenured Faculty at Agricultural Machines and Equipment Department University of Baghdad, Baghdad, Iraq, 2015 – Present Teaching, Mentor, Research, Supervision, and Management
Member, the Iraqi Agricultural Engineers Union, Iraq,
1998-Present. Meeting, Presentations,
Member, American Society of Agricultural & Biological Engineers (ASABE), 2012-Present Professional meetings, Committee, Conference presentation
current projects 'cold storage control', 'seed sorting", 'solar drying system'. and post-harvest technology research
Precision Agriculture, Post Harvest Technology, Food Processing and Engineering, Seed Technology, Applied Entomology, seed storage, Postharvest, Seed Drying, Physical Properties, and Seed Germination.
Post Harvest Technology, Food Processing and Engineering, AI aplication in agriculture
undergrad and grad students
The combination of high protein content and a soft seed coat makes the wheat-rye hybrid Triticale (Triticosecale) vulnerable to attack by rice weevils. Drying triticale grain to moisture contents safe for storage can prevent infestation by rice weevils, but if grain is being stored for seed, high drying temperatures can affect seed germination. Grain can be effectively dried at low temperatures, but low-temperature drying is difficult in hot, humid regions such as the Gulf Coast. This study nvestigated the effects of drying temperatures from 35°C to 45°C on triticale seed germination and found no statistical differences between the germination rates of the seed at any of the drying temperatures and the germination rates of controls. Final
... Show MoreCompaction of triticale grain with three moisture contents (8%, 12%, and 16% wet basis) was measured at five applied pressures (0, 7, 14, 34, and 55 kPa). Bulk density increased with increasing pressure for all moisture contents and was significantly (p < 0.0001) dependent on both moisture content and applied pressure. A Verhulst logistic equation was found to model the changes in bulk density of triticale grain with R2 of 0.986. The model showed similar beha
Triticale is a hybrid of wheat and rye grown for use as animal feed. In Florida, due to its soft coat, triticale is highly vulnerable to Sitophilus oryzae L. (rice weevil) and there is interest in development of methods to detect early-instar larvae so that infestations can be targeted before they become economically damaging. The objective of this study was to develop prediction models of the infestation degree for triticale seed infested with rice weevils of different growth stages. Spectral signatures were tested as a method to detect rice weevils in triticale seed. Groups of seeds at 11 different levels (degrees) of infestation, 0–62%, were obtained by combining different ratios of infested and uninfested seeds. A spectrophotometer wa
... Show MoreTriticale is being evaluated as a substitute for corn in animal feed and as a forage crop for Florida. Storage of triticale seed is difficult in Florida's hot and humid climate, and more information about the relationships between equilibrium moisture content (EMC) and equilibrium relative humidity (ERH) at constant temperature (sorption isotherms) of triticale is needed to develop improved storage methods. Therefore, the primary research objective was to measure the EMC for triticale seed at different ERH values at three different constant temperatures (5°C, 23°C, and 35°C) using six desiccation jars containing different saturated salt concentrations. The secondary objective was to determine the best fit equation describing these relati
... Show MoreThis study was aimed to investigate an air-flow distributer of a solar dryer. This study was contained two factors: First, the air outlet throttle (three angles, 30°, 60°, and 90°). Second, the design of the air inlet with three levels (new design (I2), without (I1), and half-opening air inlet gate of the new design (I3)). The results show significant effects on these parameters, where the highest efficiency (51.7%) was obtained at (I1) and (30°) angles. While the temperature changes between the inlet and outlet had a significant effect on the pressure difference, the pressure difference increased, reaching (1.65 Pa). Also, the drying rate was affected by the temperature and the amount of air entering the dryer. The highest d
... Show More