Throughout this paper R represents commutative ring with identity and M is a unitary left R-module. The purpose of this paper is to investigate some new results (up to our knowledge) on the concept of weak essential submodules which introduced by Muna A. Ahmed, where a submodule N of an R-module M is called weak essential, if N ? P ? (0) for each nonzero semiprime submodule P of M. In this paper we rewrite this definition in another formula. Some new definitions are introduced and various properties of weak essential submodules are considered.
The definition of semi-preopen sets were first introduced by "Andrijevic" as were is defined by :Let (X , ï´ ) be a topological space, and let A ⊆, then Ais called semi-preopen set if ⊆∘ . In this paper, we study the properties of semi-preopen sets but by another definition which is equivalent to the first definition and we also study the relationships among it and (open, α-open, preopen and semi-p-open )sets.
In this paper we define and study new concepts of functions on fibrewise topological spaces over B namely, fibrewise weakly (resp., closure, strongly) continuoac; funttions which are analogous of weakly
(resp., closure, strongly) continuous functions and the main result is : Let <p : XY be a fibrewise closure (resp., weakly, closure, strongly, strongly) continuous function, where Y is fibrewise topological space over B and X is a fibrewise set which has the
in
... Show MoreThroughout this paper R represents commutative ring with identity and M is a unitary left R-module. The purpose of this paper is to investigate some new results (up to our knowledge) on the concept of weak essential submodules which introduced by Muna A. Ahmed, where a submodule N of an R-module M is called weak essential, if N ? P ? (0) for each nonzero semiprime submodule P of M. In this paper we rewrite this definition in another formula. Some new definitions are introduced and various properties of weak essential submodules are considered.
The definition of semi-preopen sets were first introduced by "Andrijevic" as were is defined by :Let (X , ï´ ) be a topological space, and let A ⊆, then A is called semi-preopen set if ⊆∘ . In this paper, we study the properties of semi-preopen sets but by another definition which is equivalent to the first definition and we also study the relationships among it and (open, α-open, preopen and semi-p-open )sets.
Czerwi’nski et al. introduced Lucky labeling in 2009 and Akbari et al and A.Nellai Murugan et al studied it further. Czerwi’nski defined Lucky Number of graph as follows: A labeling of vertices of a graph G is called a Lucky labeling if for every pair of adjacent vertices u and v in G where . A graph G may admit any number of lucky labelings. The least integer k for which a graph G has a lucky labeling from the set 1, 2, k is the lucky number of G denoted by η(G). This paper aims to determine the lucky number of Complete graph Kn, Complete bipartite graph Km,n and Complete tripartite graph Kl,m,n. It has also been studied how the lucky number changes whi
... Show MoreThe structure of this paper includes an introduction to the definition of the nano topological space, which was defined by M. L. Thivagar, who defined the lower approximation of G and the upper approximation of G, as well as defined the boundary region of G and some other important definitions that were mentioned in this paper with giving some theories on this subject. Some examples of defining nano perfect mappings are presented along with some basic theories. Also, some basic definitions were presented that form the focus of this paper, including the definition of nano pseudometrizable space, the definition of nano compactly generated space, and the definition of completely nano para-compact. In this paper, we presented images of nan
... Show MoreThis study was conducted at the poultry farm located in the College of Agricultural Engineering Sciences, University of Baghdad, Abu Gharib (the old site), and laboratories of the Animal Production Department, Jadriya, to investigate the effect of adding hydrogen peroxide H2O2 at nanoscale levels to semen diluents of local roosters sperm in a number of semen characteristics. In this study, 80 roosters local Iraqi chickens were used, the roosters were trained three times a week, to collect semen, until the largest number of them responded. Then the best 40 of the roosters were elected for the purpose of collecting the semen with a pooled sample, and then the samples were diluted and divided equally into four parts. The concentrations of 0, 1
... Show MoreTransforming the common normal distribution through the generated Kummer Beta model to the Kummer Beta Generalized Normal Distribution (KBGND) had been achieved. Then, estimating the distribution parameters and hazard function using the MLE method, and improving these estimations by employing the genetic algorithm. Simulation is used by assuming a number of models and different sample sizes. The main finding was that the common maximum likelihood (MLE) method is the best in estimating the parameters of the Kummer Beta Generalized Normal Distribution (KBGND) compared to the common maximum likelihood according to Mean Squares Error (MSE) and Mean squares Error Integral (IMSE) criteria in estimating the hazard function. While the pr
... Show More