Preferred Language
Articles
/
zxejfJIBVTCNdQwC67HI
A New Arabic Dataset for Emotion Recognition
...Show More Authors

In this study, we have created a new Arabic dataset annotated according to Ekman’s basic emotions (Anger, Disgust, Fear, Happiness, Sadness and Surprise). This dataset is composed from Facebook posts written in the Iraqi dialect. We evaluated the quality of this dataset using four external judges which resulted in an average inter-annotation agreement of 0.751. Then we explored six different supervised machine learning methods to test the new dataset. We used Weka standard classifiers ZeroR, J48, Naïve Bayes, Multinomial Naïve Bayes for Text, and SMO. We also used a further compression-based classifier called PPM not included in Weka. Our study reveals that the PPM classifier significantly outperforms other classifiers such as SVM and Naïve Bayes achieving the highest results in terms of accuracy, precision, recall, and F-measure.

Scopus Crossref
View Publication
Publication Date
Sun Feb 25 2024
Journal Name
Baghdad Science Journal
The Effect Of Optimizers On The Generalizability Additive Neural Attention For Customer Support Twitter Dataset In Chatbot Application
...Show More Authors

When optimizing the performance of neural network-based chatbots, determining the optimizer is one of the most important aspects. Optimizers primarily control the adjustment of model parameters such as weight and bias to minimize a loss function during training. Adaptive optimizers such as ADAM have become a standard choice and are widely used for their invariant parameter updates' magnitudes concerning gradient scale variations, but often pose generalization problems. Alternatively, Stochastic Gradient Descent (SGD) with Momentum and the extension of ADAM, the ADAMW, offers several advantages. This study aims to compare and examine the effects of these optimizers on the chatbot CST dataset. The effectiveness of each optimizer is evaluat

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Fri Mar 12 2021
Journal Name
Sensors
A Robust Handwritten Numeral Recognition Using Hybrid Orthogonal Polynomials and Moments
...Show More Authors

Numeral recognition is considered an essential preliminary step for optical character recognition, document understanding, and others. Although several handwritten numeral recognition algorithms have been proposed so far, achieving adequate recognition accuracy and execution time remain challenging to date. In particular, recognition accuracy depends on the features extraction mechanism. As such, a fast and robust numeral recognition method is essential, which meets the desired accuracy by extracting the features efficiently while maintaining fast implementation time. Furthermore, to date most of the existing studies are focused on evaluating their methods based on clean environments, thus limiting understanding of their potential a

... Show More
View Publication
Scopus (34)
Crossref (35)
Scopus Clarivate Crossref
Publication Date
Tue Aug 01 2023
Journal Name
Baghdad Science Journal
An Effective Hybrid Deep Neural Network for Arabic Fake News Detection
...Show More Authors

Recently, the phenomenon of the spread of fake news or misinformation in most fields has taken on a wide resonance in societies. Combating this phenomenon and detecting misleading information manually is rather boring, takes a long time, and impractical. It is therefore necessary to rely on the fields of artificial intelligence to solve this problem. As such, this study aims to use deep learning techniques to detect Arabic fake news based on Arabic dataset called the AraNews dataset. This dataset contains news articles covering multiple fields such as politics, economy, culture, sports and others. A Hybrid Deep Neural Network has been proposed to improve accuracy. This network focuses on the properties of both the Text-Convolution Neural

... Show More
View Publication Preview PDF
Scopus (31)
Crossref (14)
Scopus Crossref
Publication Date
Sun Oct 01 2023
Journal Name
Baghdad Science Journal
Using VGG Models with Intermediate Layer Feature Maps for Static Hand Gesture Recognition
...Show More Authors

A hand gesture recognition system provides a robust and innovative solution to nonverbal communication through human–computer interaction. Deep learning models have excellent potential for usage in recognition applications. To overcome related issues, most previous studies have proposed new model architectures or have fine-tuned pre-trained models. Furthermore, these studies relied on one standard dataset for both training and testing. Thus, the accuracy of these studies is reasonable. Unlike these works, the current study investigates two deep learning models with intermediate layers to recognize static hand gesture images. Both models were tested on different datasets, adjusted to suit the dataset, and then trained under different m

... Show More
View Publication Preview PDF
Scopus (9)
Crossref (3)
Scopus Crossref
Publication Date
Mon Mar 01 2021
Journal Name
Journal Of Physics: Conference Series
A Review on Arabic Sign Language Translator Systems
...Show More Authors
Abstract<p>Deaf and dumb peoples are suffering difficulties most of the time in communicating with society. They use sign language to communicate with each other and with normal people. But Normal people find it more difficult to understand the sign language and gestures made by deaf and dumb people. Therefore, many techniques have been employed to tackle this problem by converting the sign language to a text or a voice and vice versa. In recent years, research has progressed steadily in regard to the use of computers to recognize and translate the sign language. This paper reviews significant projects in the field beginning with important steps of sign language translation. These projects can b</p> ... Show More
View Publication
Scopus (7)
Crossref (4)
Scopus Crossref
Publication Date
Thu Jun 01 2006
Journal Name
Journal Of The College Of Languages (jcl)
Demonstratives in English and Arabic : A Contrastive Study
...Show More Authors

This paper studies the demonstratives as deictic expressions in Standard Arabic and English by outlining their phonological, syntactic and semantic properties in the two languages. On the basis of the outcome of this outline, a contrastive study of the linguistic properties of this group of deictic expressions in the two languages is conducted next. The aim is to find out what generalizations could be made from the results of this contrastive study.

View Publication Preview PDF
Publication Date
Thu Jun 18 2020
Journal Name
Rimak International Journal Of Humanities And Social Sciences
STRESS IN ENGLISH AND ARABIC: A CONTRASTIVE STUDY
...Show More Authors

DBN Rashid, Rimak International Journal of Humanities and Social Sciences, 2020

View Publication
Publication Date
Tue Jun 01 2021
Journal Name
Telkomnika (telecommunication Computing Electronics And Control)
An efficient method for stamps recognition using Haar wavelet sub-bands
...Show More Authors

View Publication
Scopus (3)
Scopus Crossref
Publication Date
Tue Aug 01 2023
Journal Name
Biomedical Signal Processing And Control
Decoding transient sEMG data for intent motion recognition in transhumeral amputees
...Show More Authors

View Publication
Scopus (23)
Crossref (22)
Scopus Clarivate Crossref
Publication Date
Tue Dec 05 2023
Journal Name
Baghdad Science Journal
Indoor/Outdoor Deep Learning Based Image Classification for Object Recognition Applications
...Show More Authors

With the rapid development of smart devices, people's lives have become easier, especially for visually disabled or special-needs people. The new achievements in the fields of machine learning and deep learning let people identify and recognise the surrounding environment. In this study, the efficiency and high performance of deep learning architecture are used to build an image classification system in both indoor and outdoor environments. The proposed methodology starts with collecting two datasets (indoor and outdoor) from different separate datasets. In the second step, the collected dataset is split into training, validation, and test sets. The pre-trained GoogleNet and MobileNet-V2 models are trained using the indoor and outdoor se

... Show More
View Publication Preview PDF
Scopus (5)
Scopus Crossref