The main challenge is to protect the environment from future deterioration due to pollution and the lack of natural resources. Therefore, one of the most important things to pay attention to and get rid of its negative impact is solid waste. Solid waste is a double-edged sword according to the way it is dealt with, as neglecting it causes a serious environmental risk from water, air and soil pollution, while dealing with it in the right way makes it an important resource in preserving the environment. Accordingly, the proper management of solid waste and its reuse or recycling is the most important factor. Therefore, attention has been drawn to the use of solid waste in different ways, and the most common way is to use it as an alternative material for raw materials in engineering construction. Countless types of solid waste can be used in different ways and quantities according to the purpose for which they are intended, for example the use of rubber, construction waste, ash and many others. This study discusses the problem of solid waste and methods of its management, in addition to its use with building materials in order to improve their properties and reduce costs.
In this work, new di-acid monomers 4, 4’-di-carboxillic-2â€-chloro-4â€- nitro triphenylamine (Di-CO2H-1), 4, 4’- di-carboxylic -2â€,4â€,6â€-trichloro-triphenylamine (Di-CO2H-2) were synthesized by reaction of p-cyanobenzofluride with two aromatic amines (2-chloro 4-nitro aniline and 2,4,6-trichloro aniline by aromatic nucleophilc substitution method to produce two di cyano intermediates compounds 4, 4’-Dicyano-2â€-chloro-4â€- nitro triphenylamine (Di-CN1) and 4, 4’-dicyano-2â€,4â€,6â€-trichloro-triphenylamine (Di-CN2) which form final di-carboxylic monomers after alkaline hydrolysis. Finally, these monomers react with two different arom
... Show MoreThe present work aims to study the efficiency of using aluminum refuse, which is available locally (after dissolving it in sodium hydroxide), with different coagulants like alum [Al2 (SO4)3.18H2O], Ferric chloride FeCl3 and polyaluminum chloride (PACl) to improve the quality of water. The results showed that using this coagulant in the flocculation process gave high results in the removal of turbidity as well as improving the quality of water by precipitating a great deal of ions causing hardness. From the experimental results of the Jar test, the optimum alum dosages are (25, 50 and 70 ppm), ferric chloride dosages are (15, 40 and 60 ppm) and polyaluminum chloride dosages were (10, 35 and 55 ppm) for initial water turbidity (100, 500 an
... Show MoreMicroencapsulated of paraffin wax which acts as core material of phase change
material covered by polymer was prepared by using rabid (physical-chemical) with lower
energy (green) method. Prepolymer of condensed Melamine-Formaldehyde resin, was
solidified by heat effect gradually and surrounds the Paraffin wax as microcapsules. The
diameter of the prepared capsules was about (170-220) micron which has a proportion with
the prepolymer temperature, otherwise the thermal analysis appears as a best value of
enthalpy (ΔH) which was (12 J/gm) when the prepolymer temperature was (60˚C)
Within this paper, we developed a new series of organic chromophores based on triphenyleamine (TPA) (AL1, AL-2, AL-11 and AL-22) by engineering the structure of the electron donor (D) unit via replacing a phenyle ring or inserting thiophene as a π-linkage. For the sake of scrutinizing the impact of the TPA donating ability and the spacer upon the photovoltaic, absorptional, energetic, and geometrical characteristic of these sensitizers, density functional theory (DFT) and time-dependent DFT (TD-DFT) have been utilized. According to structural characteristics, incorporating the acceptor, π-bridge and TPA does not result in a perfect coplanar conformation in AL-22. We computed EHOMO, ELUMO and bandgap (Eg) energies by performing frequency a
... Show More