Steel-concrete-steel (SCS) structural element solutions are rising due to their advantages over conventional reinforced concrete in terms of cost and strength. The impact of SCS sections with various core materials on the structural performance of composites has not yet been fully explored experimentally, and in this work, both slag and polypropylene fibers were incorporated in producing eco-friendly steel-concrete-steel composite sections. This study examined the ductility, ultimate strength, failure modes, and energy absorption capacities of steel-concrete-steel filled with eco-friendly concrete, enhanced by polypropylene fiber (PPF) to understand its impact on modern structural projects. Eco-friendly concrete was produced by the partial replacement of cement with waste material such as ground granulated blast-furnace slag (GGBS) to reduce carbon dioxide emitted as one of the by-products of cement which harms the environment. A constant rate of cement replacement with GGBS was used. Polypropylene fibers were used as a fill material in the structural elements to enhance the performance. Seven specimens of SCS were analyzed for their mechanical properties using push-out monotonic loading. The control specimen was constructed with a conventional concrete core, even as testing specimens had different amounts of polypropylene fiber added to the core. The current investigation indicates that the impact of polypropylene fiber (PPF) material filling concrete on SCS performance is somewhat smaller than that of ordinary concrete (less than 10 percent). Applying PPF to concrete can increase its tensile strength, slow the spread of cracks, and strengthen the material overall. The compressive strengths of the samples were affected by the proportion of PPF, with the strength increasing from 47.6 MPa to 56.43 MPa as the PPF levels increased from 0 to 2 percent. Compared to the control sample, the PPF SCS specimens had an increased energy absorption. On the other hand, in comparison to PPF SCS specimens, the ductility level of the control sample was smaller.
In this work, some of new 2-benzylidenehydrazinecarbothioamide derivatives have been prepared by condensation of thiosemicarbazide and different substituted aromatic benzaldehydes in presence of glacial acetic acid to give compounds (1-6), these compounds have characterized by its physical properties and spectroscopic methods. This work also included theoretical study to prove the ability of these compounds as corrosion inhibitors; The program package of Gaussian 09W with its graphical user interface GaussView 5.0 had used for this purpose; the methods of Density Functional Theory (DFT) with basis set of 6-311G (d,p) / hybrid function of B3LYP and semiempirical method of PM3 have been used, the study included theoretical simulation
... Show MoreThis paper has investigated experimentally the dynamic buckling behavior of AISI 303 stainless steel Aluminized and as received long columns. These columns, hot-dip aluminized and as received, are tested under dynamic buckling, 22 specimens, without aluminizing (type 1), and 50 specimens, with hot-dip aluminizing at different aluminizing conditions of dipping temperature and dipping time (type 2), are tested under dynamic compression loading and under dynamic combined loading (compression and bending) by using a rotating buckling test machine. The experimental results are compared with Perry Robertson interaction formula that used for long columns. Greenhill formula is used to get a mathematical model that descripts the buckling behavior
... Show MoreThe present study focused mainly on the analysis of stiffened and unstiffened composite laminated plates subjected to buckling load. Analytical, numerical and experimental analysis for different cases has been considered. The experimental investigation is to manufacture the laminates and to find mechanical properties of glass-polyester such as longitudinal, transverse young modulus, shear modulus. The compressive test was carried to find the critical buckling load of plate. The design parameters of the laminates such as aspect ratio, thickness ratio, boundary conditions and number of stiffeners were investigated using high order shear deformation theory (HOST) and Finite element coded by ANSYS .The main conclusion was the buckling load c
... Show MoreIn this work, an investigation for the dynamic analysis of thin composite cylindrical and spherical shells is presented. The analytical solution is based upon the higher order shear deformation theory of elastic shells from which the developed equations are derived to deal with orthotropic layers. This will cover the determination of the fundamental natural frequencies and mode shapes for simply supported composites cylindrical and spherical shells.
The analytical results obtained by using the derived equations were confirmed by the finite element technique using the well known Ansys package. The results have shown a good agreement with a maximum percentage of discrepancy, which gives a confidence o
... Show MoreThis study is a numerical investigation of the performance of reinforced concrete (RC) columns after fire exposure. This study aims to investigate the effect of introducing lateral ties and using the RC jacket on improving post-fire behavior of these columns, the effect of the duration of the fire on ultimate load of columns. The analysis was performed through ABAQUS, a 3D – non-linear finite element program. 4 m tall lengthening square RC column with a cross- section of 0.4 m × 0.4 m was used as a test specimen. The RC column was reinforced by 4Ø28 mm longitudinal bars bonded by steel tie bars of Ø10 mm spaced at 400 mm. The firing temperature was increased to 60
The aim of this study was to propose and evaluate an eco-epidemiological model with Allee effect and nonlinear harvesting in predators. It was assumed that there is an SI-type of disease in prey, and only portion of the prey would be attacked by the predator due to the fleeing of the remainder of the prey to a safe area. It was also assumed that the predator consumed the prey according to modified Holling type-II functional response. All possible equilibrium points were determined, and the local and global stabilities were investigated. The possibility of occurrence of local bifurcation was also studied. Numerical simulation was used to further evaluate the global dynamics and the effects of varying parameters on the asymptotic behavior of
... Show MoreThe purpose of this study is designate quenching and tempering heat treatment by using Taguchi technique to determine optimal factors of heat treatment (austenitizing temperature, percentage of nanoparticles, type of base media, nanoparticles type and soaking time) for increasing hardness, wear rate and impact energy properties of 420 martensitic stainless steel. An (L18) orthogonal array was chosen for the design of experiment. The optimum process parameters were determined by using signal-to-noise ratio (larger is better) criterion for hardness and impact energy while (Smaller is better) criterion was for the wear rate. The importance levels of process parameters that effect on hardness, wear rate and impact energy propertie
... Show MoreBackground: Numerous methods have been described for achievement of Intermaxillary fixation in the treatment of fractures of facial skeleton. Conventional methods like Erich arch bars and eyelet wires are currently the most common methods for achieving intermaxillary fixation (IMF), however, they have their own disadvantages. Since 1989, IMF using intraoral self-tapping IMF screws has been introduced for treatment of mandibular fractures. The aim of this study was to evaluate the efficacy, advantages, disadvantages and potential complications associated with using of self-tapping IMF screws in the treatment of mandibular fractures. Material and Methods: Twenty patients with favorable mandibular fractures, attended to Oral and Maxillofacial
... Show MoreIn this research is to study the influence of the aging heat treatment on the pitting corrosion resistance of martensitic stainless steel (MSS), where a number of specimens from martensitic stainless steel were subjected to solution treatment at 1100 oC for one hour followed by water quenching then aging in the temperatures range (500-750) oC for different holding times (1,5,10,15&20) hr. Accelerated chemical corrosion test and immersion chemical corrosion test were performed on samples after heat treatment. The results of the research showed that the pitting corrosion resistance is significantly affected by the aging temperature. Where found that the aging samples at a temperature of 500 °C have the highest ra
... Show More