Steel-concrete-steel (SCS) structural element solutions are rising due to their advantages over conventional reinforced concrete in terms of cost and strength. The impact of SCS sections with various core materials on the structural performance of composites has not yet been fully explored experimentally, and in this work, both slag and polypropylene fibers were incorporated in producing eco-friendly steel-concrete-steel composite sections. This study examined the ductility, ultimate strength, failure modes, and energy absorption capacities of steel-concrete-steel filled with eco-friendly concrete, enhanced by polypropylene fiber (PPF) to understand its impact on modern structural projects. Eco-friendly concrete was produced by the partial replacement of cement with waste material such as ground granulated blast-furnace slag (GGBS) to reduce carbon dioxide emitted as one of the by-products of cement which harms the environment. A constant rate of cement replacement with GGBS was used. Polypropylene fibers were used as a fill material in the structural elements to enhance the performance. Seven specimens of SCS were analyzed for their mechanical properties using push-out monotonic loading. The control specimen was constructed with a conventional concrete core, even as testing specimens had different amounts of polypropylene fiber added to the core. The current investigation indicates that the impact of polypropylene fiber (PPF) material filling concrete on SCS performance is somewhat smaller than that of ordinary concrete (less than 10 percent). Applying PPF to concrete can increase its tensile strength, slow the spread of cracks, and strengthen the material overall. The compressive strengths of the samples were affected by the proportion of PPF, with the strength increasing from 47.6 MPa to 56.43 MPa as the PPF levels increased from 0 to 2 percent. Compared to the control sample, the PPF SCS specimens had an increased energy absorption. On the other hand, in comparison to PPF SCS specimens, the ductility level of the control sample was smaller.
Laser beam has been widely used to improve the mechanical properties of the metals. It used for cutting, drilling, hardening, welding……etc. The use of Laser beam has many features in accuracy and speeding in work, also in the treatment of metals locally, and in the places that is hard to reach by traditional ways. In this research a surface treatment was done to medium carbon steel (0.4%C) which is common kind of steel that is used in industry. Pulsing Neodymium -YAG Laser has been used and 1.06 micrometer wave length and 5 msec and the distance is about 30 centimeter between the exit area of the Laser beam from the system and the piece that treated . We are going to check the fatigue resistance for samples that is
... Show MoreBackground: The bond strength of the root canal sealers to dentin is very important property for maintaining the integrity and the seal of root canal filling. The aim of this study was to evaluate and compare the push-out bond strength of root filled with total fill Bioceramic, AH Plus and Gutta-flow®2 sealers using GuttaFusion®obturation system versus single cone obturation technique. Materials and method: sixty of mandibular premolars teeth with straight roots were used in this study, these roots were instrumented using Reciproc system, instrumentation were done with copious irrigation of 3 mL 5.25% sodium hypochlorite solution (NaOCl) during all the steps of preparation, and smear layer will be removed with 1 ml of 17% EDTA kept in
... Show MoreBackground: The bond strength of the root canal sealers to dentin is very important property for maintaining the integrity and the seal of root canal filling. The aim of this study was to evaluate and compare the push-out bond strength of root filled with total fill Bioceramic, AH Plus and Gutta-flow®2 sealers using GuttaFusion®obturation system versus single cone obturation technique. Materials and method: sixty of mandibular premolars teeth with straight roots were used in this study, these roots were instrumented using Reciproc system, instrumentation were done with copious irrigation of 3 mL 5.25% sodium hypochlorite solution (NaOCl) during all the steps of preparation, and smear layer will be removed with 1 ml of 17% EDTA kept in
... Show MoreA lotic ecosystem is considered a source of carbon dioxide (CO2) in the atmosphere where it becomes supersaturated with CO2, which contributes to the global carbon cycle. To enhance our comprehension of the roles of CO2 in rivers, an outdoor experiment was designed with controlled carbon source inputs to investigate the roles of the dissolved organic carbon (DOC) and dissolved inorganic carbon (DIC) in the phytoplankton community. Plastic enclosures were installed in the Tigris River within Baghdad for that goal. Samples were collected on the first day, as well as on the 5th and the 12th days from 14 enclosures. The enclosures were treated by artificial glucose (C6H12O6) (10, 20, 30mg/ l) as DOC sources, while sodium bicarbonate (NaHCO3) (1
... Show MoreA theoretical study was done in this work for Fatigue , Fatigue Crack Growth (FCG) and stress factor intensity range for steel . It also includes Generalized Paris Equation and the fulfillment of his equation which promises that there is a relation between parameters C and n . Usig Simple Paris Equation through which we concluded the practical values of C and n and compared them with the theoretical values which have been concluded by Generalized Paris Equation . The value of da/dN and ∆K for every material and sample were concluded and compared with the data which was used in
... Show MoreThe aim of this work, is to study color filming by using different intensities of fluorescent light, where we evaluate the capture image qualities for the RGB bands and component of L. And we study the relation between the means of RGBL values of the images as a function of the power of fluorescent light circuit . From the results, we show that the mean μ increases rapidly at low power values, then it will reach the stability at high power values.
This investigation aims to study some properties of lightweight aggregate concrete reinforced by mono or hybrid fibers of different sizes and types. In this research, the considered lightweight aggregate was Light Expanded Clay Aggregate while the adopted fibers included hooked, straight, polypropylene, and glass. Eleven lightweight concrete mixes were considered, These mixes comprised of; one plain concrete mix (without fibers), two reinforced concrete mixtures of mono fiber (hooked or straight fibers), six reinforced concrete mixtures of double hybrid fibers, and two reinforced concrete mixtures of triple hybrid fibers. Hardened concrete properties were investigated in this study. G
This investigation aims to study some properties of lightweight aggregate concrete reinforced by mono or hybrid fibers of different sizes and types. In this research, the considered lightweight aggregate was Light Expanded Clay Aggregate while the adopted fibers included hooked, straight, polypropylene, and glass. Eleven lightweight concrete mixes were considered, These mixes comprised of; one plain concrete mix (without fibers), two reinforced concrete mixtures of mono fiber (hooked or straight fibers), six reinforced concrete mixtures of double hybrid fibers, and two reinforced concrete mixtures of triple hybrid fibers. Hardened concrete properties were investigated in this study. G
In this research the hard chromium electroplating process, which is one of the common methods of overlay coating was used, by using chromium acid as source of chromium and sulphuric acid as catalyst since the ratio between chromic acid and sulphuric acid is (100 : 1) consequently. Plating process was made by applying current of density (40 Amp / dm2) and the range of solution temperature was (50 – 55oC) with different time periods (1-5 hr). A low carbon steel type (Ck15) was used as substrate for hard chromium electroplating. Solid carburization was carried out for hard chromium plating specimen at temperature (925oC) with time duration (2 hr) to be followed with quenching and tempering
... Show MoreIn this research, the effects of both current and argon gas pressure on the bending properties of welded joints were studied. Using the possible ranges of welding gas pressures and currents, Tungsten inert gas welding (TIG) of stainless steel (304) sheet was used to obtain their influence on the maximum bending force of the (TIG) welded joints. Design of experiment (DOE) ‘version 10' was used to determine the design matrix of experiments depending on the used levels of the input factors. Response surface methodology (RSM) technique was used to obtain an empirical mathematical model for the maximum bending force as a function of welding parameters (Current and Argon gas pressure). Also, the analysis of variance (ANOVA) was used to verif
... Show More