Progesterone is highly used in pregnant women as therapeutic agent to maintain and support pregnancy. To explore the effects of progesterone usage allover gestation till 7days postnatally on mice offspring ovaries development and anogenital distance. Ten pregnant mice were equally divide into control group that was injected with sesame oil which is used as a solvent for progesterone and treated group that is daily intraperitoneally injected with progesterone (dissolved in sesame oil 1: 10) at dose 10.2 mg/kg (the equivalent human dose) all through gestation till7day postnatal then sacrificed and measuring the anogenital distance (the distance between anus and genital papilla). Histological slides were prepared, and Diameters of the ovary, primary oocyte and primordial follicles were measured and histopathological changes analysis was done. Progesterone administration cause significant increment (p> 0-05) in anogenital distance, significant decrement in primary oocyte diameter and primordial follicle diameter, with no significant difference in the ovary diameter. Histopathological changes were seen as hemorrhage, detachment of follicular cells from basement membrane with irregular arrangement and thickening or death of follicular cells, pyknosis of primary oocytes and vacculation. Stromal cells degeneration. The current study revealed that progesterone injection of mice with equivalent human dose during pregnancy is embryotoxic and teratogenic, may alter the female reproductive performance with virilizing the female genitalia. The benefit of progesterone as a therapies need to be proven before recommended as supportive treatment …
The paper discusses the structural and optical properties of In2O3 and In2O3-SnO2 gas sensor thin films were deposited on glass and silicon substrates and grown by irradiation of assistant microwave on seeded layer nucleated using spin coating technique. The X-ray diffraction revealed a polycrystalline nature of the cubic structure. Atomic Force Microscopy (AFM) used for morphology analysis that shown the grain size of the prepared thin film is less than 100 nm, surface roughness and root mean square for In2O3 where increased after loading SnO2, this addition is a challenge in gas sensing application. Sensitivity of In2O3 thin film against NO2 toxic gas is 35% at 300oC. Sensing properties were improved after adding Tin Oxide (SnO2) to be mo
... Show MoreObjective: To evaluate the client's satisfaction about the services provided in primary health care centers in the
city of Baghdad and its impact on the improvement of services.
Methodology: A simple random sample consisting of (200) clients to primary health care centers in the city of
Baghdad, (15-20) clients for each center using a questionnaire to evaluate the client's satisfaction for the service
and the use of the direct method of interview, which lasts for (6-10) minutes.
Results: Results of the study show that the number of men visits to primary health care centers, fewer women
This indicates that the most important responsibilities of family members and private health care is the
responsibility of women than
In this paper, a numerical model for fluid-structure interaction (FSI) analysis is developed for investigating the aeroelastic response of a single wind turbine blade. The Blade Element Momentum (BEM) theory was adopted to calculate the aerodynamic forces considering the effects of wind shear and tower shadow. The wind turbine blade was modeled as a rotating cantilever beam discretized using Finite Element Method (FEM) to analyze the deformation and vibration of the blade. The aeroelastic response of the blade was obtained by coupling these aerodynamic and structural models using a coupled BEM-FEM program written in MATLAB. The governing FSI equations of motion are iteratively calculated at each time step, through exchanging data between
... Show MorePolyacrylonitrile nanofiber (PANFS), a well-known polymers, has been extensively employed in the manufacturing of carbon nanofibers (CNFS), which have recently gained substantial attention due to their excellent features, such as spinnability, environmental friendliness, and commercial feasibility. Because of their high carbon yield and versatility in tailoring the final CNFS structure, In addition to the simple formation of ladder structures through nitrile polymerization to yield stable products, CNFS and PAN have been the focus of extensive research as potential production precursors. For instance, the development of biomedical and high-performance composites has now become achievable. PAN homopolymer or PAN-based precursor copolymer can
... Show MoreBackground: The use of osseointegrated fixtures in dentistry has been demonstrated both histologically and clinically to be beneficial in providing long term oral rehabilitation in completely edentulous individual. Most patients suffer from denture instability; particularly with mandibular prosthesis, the use of dental implant will be benefit significantly from even a slight increase in retention. The concept of implanting two to four fixtures in a bony ridge to retain a complete denture prosthesis appealing therefore, as retention, stability and acceptable economic compromise to the expanse incurred with the multiple fixture supported fixed prosthesis. Materials and methods in this study the sample were eight patients selected from a hosp
... Show MoreChloroacetamide derivatives (2a-g) have been prepared through reaction of chloroacetyl chloride(1) (which prepared by the reaction of chloroacetic acid with thionyl chloride) with primary aromatic amines and sulfa compounds to afford compounds (2a-g) which then reacted with p-hydroxy benzaldehyde via Williamson reaction to obtaine the new compounds 2-(4-formyl phenoxy)-N-aryl acetamide (3a-g). Finally , compounds (3a-g) will be use as a good synthon to prepare the Schiff bases represented by compounds 2-(4-aryliminophenoxy)-N-arylacetamide (4a-g). through , reaction with some primary aromatic amine. All the prepared compounds were investigated by the available physical and spectroscopic methods.
Bendable concrete, also known as Engineered Cementitious Composite (ECC) is a type of ultra-ductile cementitious composites reinforced with fibres to control the width of cracks. It has the ability to enhance concrete flexibility by withstanding strains of 3% and higher. The properties of bendable concrete mixes (compressive strength, flexural strength, and drying shrinkage) are here assessed after the incorporation of supplementary cementitious materials, silica fume, polymer fibres, and the use of ordinary Portland cement (O.P.C) and Portland limestone cement (IL). Mixes with Portland limestone cement show lower drying shrinkage and lower compressive and flexural strength than mixes with ordinary Portland cement, due to the ratio o
... Show MoreConventional concretes are almost unbending, and even a small amount of strain potential leaves them brittle. This lack of bendability is a major source of strain loss, and it has been the main goal behind the development of bendable concrete, often known with engineered ce ment composites, or ECC. This form of concrete has a lot more flexibility than regular concrete. Micromechanical polymer fibers are used to strengthen ECC. In most cases, ECC uses a 2% amount of thin, separated fibers. As a result, bendable concrete deforms but unlike traditional concrete, it does not crack. This study aims to include this kind of concrete, bendable concrete, which can be used to solve concrete problems. Karasta (CK) and Tasluja (CT) Portland Lime
... Show More