Improved oral bioavailability of lipophilic substances can be achieved using self-emulsifying drug delivery systems. However, because the properties of self-emulsifying are greatly influenced by surfactant amount and type, type of oil used, droplet size, charge, cosolvents, and physiological variables, the synthesis of self-emulsifying is highly complex; consequently, only a small number of excipient self-emulsifying formulations has been developed so far for clinical use. This study reports a highly effective procedure for developing self-emulsifying formulations using a novel approach based on the hydrophilic-lipophilic difference theory. Microemulsion characteristics, such as the constituents and amounts of oil and surfactant electrolyte concentration and temperature, were optimized to produce high-quality self-emulsifying drug delivery systems. Furthermore, in vitro lipolysis and in vivo bioavailability studies of fenofibrate, a highly lipophilic oral drug, loaded self-emulsifying dosage form were conducted. The self-emulsifying drug delivery system used in this study comprised soybean oil, water with a specific salinity, sodium dioctyl sulphosuccinate as a surfactant, and orlistat as a lipase inhibitor. The hydrophilic-lipophilic difference-based approach involved fewer experiments and allowed for the development of an efficient self-emulsifying dosage form with a relatively low surfactant concentration when compared to previous works. The salinity and equivalent alkane carbon number were optimized, with the proper selection of the type and amount of surfactant, to obtain a bicontinuous microemulsion (Winsor type III) that can be fully diluted with water. In vitro lipolysis was investigated in fasting and feeding settings, which showed a significant dosage form digestion by lipase enzyme; orlistat was successfully used to overcome dosage digestion and drug precipitation problem. In vivo experiments in rats involved oral gavage with a self-emulsifying dosage form containing fenofibrate (20 mg/kg). The pharmacokinetic profile of fenofibric acid showed remarkable enhancement in the bioavailability (F-95%). These findings demonstrate that the hydrophilic-lipophilic difference approach is a practical, scalable, and easy technique for self-emulsifying drug delivery system formulation development. Keywords: HLD theory, fenofibrate, SEDDS, lipolysis
Objective: The goal of this research is to load Doxorubicin (DOX) on silver nanoparticles coupled with folic acid and test their anticancer properties against breast cancer. Methods: Chitosan-Capped silver nanoparticles (CS-AgNPs) were manufactured and loaded with folic acid as well as an anticancer drug, Doxorubicin, to form CS-AgNPs-DOX-FA conjugate. AFM, FTIR, and SEM techniques were used to characterize the samples. The produced multifunctional nano-formulation served as an intrinsic drug delivery system, allowing for effective loading and targeting of chemotherapeutics on the Breast cancer (AMJ 13) cell line. Flowcytometry was used to assess therapy efficacy by measuring apoptotic induction. Results: DOX and CS-Ag
... Show MorePoly vinyl alcohol has been studied for its ability to form crystallites by using annealing method. Semicrystalline films of poly vinyl alcohol (PVA) were prepared by casting 11.5 wt. % and 13 wt. % PVA aqueous solution onto glass slides at annealing temperature range 90 -120°C and duration time 15- 60 minute. This allowed the macromolecules to form crystallites, small regions of folded and compacted chains separated by amorphous regions where single PVA chain may pass through several of these crystallites. Degree of crystallinity of PVA films (hydrogels) was determined by method of density; on the other hand the swelling behavior was conducted by the determination of water uptake, wet degree of crystallinity, gel fraction and solubilit
... Show MoreNystatin is the drug of choice for treatment of cutaneous fungal infections with main disadvantage that is the need for multiple applications to achieve complete eradication which may reduce patient compliance. Microparticles offer a solution for such issue as they are one of sustained release preparations that achieve slow release of drug over an extended period of time. The objectives of this study were to fabricate nystatin-loaded chitosan microparticles with the ultimate goal of prolonging drug release and to analyze the influence of polymer concentration on various properties of microparticles. Microparticles were prepared by chemical cross-linking method using glutaraldehyde as cross-linking agent. Five formulas, namely N1C1, N1C2,
... Show MoreIn this review of literature, the light will be concentrated on the local drugs delivery systems for treating the periodontal diseases. Principles, types, advantages and indications of each type will be discussed in this paper.
In the present study, nanoporous material type MCM-41 was prepared by the sol-gel technique and was used as a carrier for prednisolone (PRD) drug delivery. The structural properties of mesoporous were fully characterized by X-ray diffraction (XRD), N2 adsorption /desorption and Fourier-transform infrared (FTIR). The mass transfer in term of adsorption process (loading) and desorption process (releasing) properties were investigated. The maximum drug loading efficiency was equal to 38% and 47.5% at different concentrations. The PRD released was prudently studied in water media of pH 6.8 simulated body fluid (SBF) in according to "United State Pharmacopeia (USP38)". The results proved that the release of prednisolone from MCM-41
... Show MoreThis study aims to encapsulate atenolol within floating alginate-ethylcellulose beads as an oral controlled-release delivery system using aqueous colloidal polymer dispersion (ACPD) method.To optimize drug entrapment efficiency and dissolution behavior of the prepared beads, different parameters of drug: polymer ratio, polymer mixture ratio, and gelling agent concentration were involved.The prepared beads were investigated with respect to their buoyancy, encapsulation efficiency, and dissolution behavior in the media: 0.1 N HCl (pH 1.2), acetate buffer (pH 4.6) and phosphate buffer (pH 6.8). The release kinetics and mechanism of the drug from the prepared beads was investigated.All prepare
... Show MoreThis study aims to encapsulate atenolol within floating alginate-ethylcellulose beads as an oral controlled-release delivery system using aqueous colloidal polymer dispersion (ACPD) method.To optimize drug entrapment efficiency and dissolution behavior of the prepared beads, different parameters of drug: polymer ratio, polymer mixture ratio, and gelling agent concentration were involved.The prepared beads were investigated with respect to their buoyancy, encapsulation efficiency, and dissolution behavior in the media: 0.1 N HCl (pH 1.2), acetate buffer (pH 4.6) and phosphate buffer (pH 6.8). The release kinetics and mechanism of the drug from the prepared beads was investigated.All prepared atenolol beads remained f
... Show MoreOndansetron HCl (OND) is a potent antiemetic drug used for control of nausea and vomiting associated with cancer chemotherapy. It exhibits only 60 – 70 % of oral bioavailability due to first pass metabolism and has a relative short half-life of 3-5 hours. Poor bioavailability not only leads to the frequent dosing but also shows very poor patient adherence. Hence, in the present study an approach has been made to develop OND nanoparticles using eudragit® RS100 and eudragit® RL100 polymer to control release of OND for transdermal delivery and to improve patient compliance.
Six formulas of OND nanoparticles were prepared using nanoprecipitation technique. The particles sizes and zeta potential were measured
... Show MoreConventional dosage forms for topical and transdermal drug delivery have several disadvantages related mainly to its poor skin permeation and patient compliance. Many approaches have been developed to improve these dosage forms. Film forming drug delivery systems represents a recent advancement in this field. It provides improved patient compliance with enhanced skin permeation of drugs. In its simplest form, these consist of a polymeric solution, usually in a supersaturated state, in a suitable solvent. A plasticizer is usually added to improve the flexibility and enhance the tensile strength to the film. It is also possible to control and sustain the drug release from the films by controlling the polymeric content, concentration o
... Show More