This research presents an experimental investigation on the influence of metakaolin replacement percentage upon some properties of different concrete types. Three types of concrete were adopted (self- compacted concrete, high performance concrete and reactive powder concrete) all of high sulphate (SO3) percentage from the fine aggregate weight, 0.75%. Three percentages of metakaolin replacement were selected to be studied (5, 7 and 10) %. Three types of concrete properties (compressive, flexural and splitting tensile strength) were adopted to achieve better understanding for the influence of adding metakaolin.. The output results indicated that the percentage of metakaolin had a different level of positive effect on the compressive strength for both including and excluding of internal sulphate attack. This effect reached at 28 days of curing to (11.86, 10.22 and 4.75) % in case of excluding sulphate attack and to (13.82, 11.47and 6.53) % in the other case for SCC, HPC and RPC respectively. It can be concluded that the effect of metakaolin in both SCC and HPC are more influence than in RPC. Splitting and flexural strength have showed a similar behavior, flexural strength increased by (15.38, 9.42 and 5,84) % at age of 28 days when the sulphate attack is excluded, while it was (14.02, 10.66 and 4.28)% in case of sulphate attack included for SCC,HPC and RPC respectively. The response of splitting tensile strength for both including and excluding of sulphate attack reached to (13.03, 12.95 and 9.17) % and (16.88, 10.33 and 6.74) % respectively for SCC, HPC and RPC.
Sensing insole systems are a promising technology for various applications in healthcare and sports. They can provide valuable information about the foot pressure distribution and gait patterns of different individuals. However, designing and implementing such systems poses several challenges, such as sensor selection, calibration, data processing, and interpretation. This paper proposes a sensing insole system that uses force-sensitive resistors (FSRs) to measure the pressure exerted by the foot on different regions of the insole. This system classifies four types of foot deformities: normal, flat, over-pronation, and excessive supination. The classification stage uses the differential values of pressure points as input for a feedforwar
... Show MoreBreast cancer (BC) is the most commonly diagnosed cancer in women. The metabolism of iron is closely regulated by hepcidin which exerts its action by interacting with a ferroportin.
The aim of the present study was to assess the alterations in the levels of some serum biomarkers that have a role in iron homeostasis (hepcidin and ferroportin) in addition to hematological parameters (hemoglobin, leukocyte and platelets count) in different stages of BC.
This study included 66 women with BC. The patients were categorized as follows : group 1 includes :22 patients with stage I disease ,group 2 includes: 22 patients with stage II disease ,and group 3 include: 22 patients with stage III disease .Group 4 includes :22 appare
... Show MoreThere are serious environmental problems in all countries of the world, due to the waste material such as crushed clay bricks (CCB) and in huge quantities resulting from the demolition of buildings. In order to reduce the effects of this problem as well as to preserve natural resources, it is possible to work on recycling (CCB) and to use it in the manufacture of environmentally friendly loaded building units by replacing percentages in coarse aggregate by volume. It can be used as a powder and replacing of percentages in cement by weight and study the effect on the physical and mechanical properties of the concrete and the masonry unit. Evaluation of its performance through workability, dry density, compressive strength, thermal conduct
... Show MoreThere are many techniques that can be used to estimate the spray quality traits such as the spray coverage, droplet density, droplet count, and droplet diameter. One of the most common techniques is to use water sensitive papers (WSP) as a spray collector on field conditions and analyzing them using several software. However, possible merger of some droplets could occur after they deposit on WSP, and this could affect the accuracy of the results. In this research, image processing technique was used for better estimation of the spray traits, and to overcome the problem of droplet merger. The droplets were classified as non-merged and merged droplets based on their roundness, then the merged droplets were separated based on the average non-m
... Show MoreThis paper focuses on Load distribution factors for horizontally curved composite concrete-steel girder bridges. The finite-element analysis software“SAP2000” is used to examine the key parameters that can influence the distribution factors for horizontally curved composite steel
girders. A parametric study is conducted to study the load distribution characteristics of such bridge system due to dead loading and AASHTO truck loading using finite elements method. The key parameters considered in this study are: span-to-radius of curvature ratio, span length, number of girders, girders spacing, number of lanes, and truck loading conditions. The results have shown that the curvature is the most critical factor which plays an important
Lacing reinforcement plays a critical role in the design and performance of reinforced concrete (RC) slabs by distributing the applied loads more evenly across the slab, ensuring that no specific area of the slab is overloaded. In this study, nine slabs, divided into three groups according to the investigated parameters, were meticulously designed and evaluated to study the interplay between the lacing reinforcement and other key parameters. Each slab was crafted for simple support and was subjected to both static and repeated two-point load tests. The lacing reinforcement had an angle of 45° with various tension and lacing steel. The repeated-tested specimens with lacing reinforcement experienced smaller ductility than those of s
... Show MoreLacing reinforcement plays a critical role in the design and performance of reinforced concrete (RC) slabs by distributing the applied loads more evenly across the slab, ensuring that no specific area of the slab is overloaded. In this study, nine slabs, divided into three groups according to the investigated parameters, were meticulously designed and evaluated to study the interplay between the lacing reinforcement and other key parameters. Each slab was crafted for simple support and was subjected to both static and repeated two-point load tests. The lacing reinforcement had an angle of 45° with various tension and lacing steel. The repeated-tested specimens with lacing reinforcement experienced smaller ductility than those of s
... Show MoreA composite section is made up of a concrete slab attached to a steel beam by means of shear connectors. Under positive and negative bending moment, part of the slab will act as a flange of the beam, resisting the longitudinal compression or tension force. When the spacing between girders becomes large, it is evident that the simple beam theory does not strictly apply because the longitudinal stress in the flange will vary with distance from the girder web, the flange being more highly stressed over the web than in the extremities. This phenomenon is termed "shear lag". In this paper, a nonlinear three-dimensional finite element analysis is employed to evaluate and determine the actual effective slab width of the composite steel-concrete
... Show More