Impact strength of self-compacted concrete is a field of interest, mostly when the concrete is produced from sustainable materials. This research's main objective is to clarify the ability to use two types of Portland limestone cement (Karasta and Tasluja) in self compacted concrete under impact loading, further to the economic and environmental benefits of the limestone cement. The impact loading was applied by a low-speed test, using the drop ball on concrete. Moreover, the study reveals the resistance of the grids reinforced concrete to impact loading by using polymer grid, and steel grid reinforced concrete slabs. Mixes reinforced by steel mesh had the highest results, indicating that the steel mesh was more robust because it had
... Show MoreThin-walled members are increasingly used in structural applications, especially in light structures like in constructions and aircraft structures because of their high strength-to-weight ratio. Perforations are often made on these structures for reducing weight and to facilitate the services and maintenance works like in aircraft wing ribs. This type of structures suffers from buckling phenomena due to its dimensions, and this suffering increases with the presence of holes in it. This study investigated experimentally and numerically the buckling behavior of aluminum alloy 6061-O thin-walled lipped channel beam with specific holes subjected to compression load. A nonlinear finite elements analysis was used to obtain the
... Show MoreThis study aimed to investigate the influence of longitudinal steel embedded tubes located at the center of the column cross-section on the behavior of reinforced concrete (RC) columns. The experimental program consisted of 8 testing pin-ended square sectional columns of 150×150 mm, having a total height of 1400 mm, subjected to eccentric load. The considered variables were the steel square tube sizes of 25, 51 and 68 mm side dimensions and the load eccentricity (50 and 150) mm. RC columns were concealed steel tubes with hollow ratios of 3%, 12% and 20% depending on tube sizes used. The experimental results indicated an improvement in the overall behavior of eccentric columns when steel embedded tubes are used. The maximum gain in
... Show MoreTest results of six half-scale reinforced concrete flat plates connections with an opening in the vicinity of the column are reported. The test specimens represent a portion of a slab bounded by the lines of contraflexure around the column. The tests were designed to study the effect of openings on the punching shear behavior of the slab-column connections. The test parameters were the location and the size of the openings. One specimen had no opening and the remaining five had various arrangements of openings around the column. All specimens were cast with normal density concrete of approximately 30 MPa compressive strength. The openings in the specimens were square, with the sides parallel to the sides of the column. Three sizes of ope
... Show MoreGypseous soil, which covers vast area in west, middle, east and south west regions of Iraq exhibit acceptable strength properties when dry, but it is weak and collapsible when it comes in touch with moisture from rain or other sources. When such weak soil is adopted for earth reinforced embankment construction, it may exhibit hazardous situation. Gypseous soil was investigated for the optimum liquid asphalt requirements of both cutback and emulsion using the one-dimensional unconfined compression strength test. The optimum fluid content was 13% (7% of cutback with 6% water content), and 17% (9% of emulsion with 8% water content). A laboratory model box of 50x50x25 cm was used as a representative of embankment; soil or asphalt stabilize
... Show MoreThe main objective of this paper is to study the behavior of Non-Prismatic Reinforced Concrete (NPRC) beams with and without rectangular openings either when exposed to fire or not. The experimental program involves casting and testing 9 NPRC beams divided into 3 main groups. These groups were categorized according to heating temperature (ambient temperature, 400°C, and 700°C), with each group containing 3 NPRC beams (solid beams and beams with 6 and 8 trapezoidal openings). For beams with similar geometry, increasing the burning temperature results in their deterioration as reflected in their increasing mid-span deflection throughout the fire exposure period and their residual deflection after cooling. Meanwhile, the existing ope
... Show MoreThe main objective of this paper is to study the behavior of Non-Prismatic Reinforced Concrete (NPRC) beams with and without rectangular openings either when exposed to fire or not. The experimental program involves casting and testing 9 NPRC beams divided into 3 main groups. These groups were categorized according to heating temperature (ambient temperature, 400°C, and 700°C), with each group containing 3 NPRC beams (solid beams and beams with 6 and 8 trapezoidal openings). For beams with similar geometry, increasing the burning temperature results in their deterioration as reflected in their increasing mid-span deflection throughout the fire exposure period and their residual deflection after cooling. Meanwhile, the existing ope
... Show More