General Background: Deep image matting is a fundamental task in computer vision, enabling precise foreground extraction from complex backgrounds, with applications in augmented reality, computer graphics, and video processing. Specific Background: Despite advancements in deep learning-based methods, preserving fine details such as hair and transparency remains a challenge. Knowledge Gap: Existing approaches struggle with accuracy and efficiency, necessitating novel techniques to enhance matting precision. Aims: This study integrates deep learning with fusion techniques to improve alpha matte estimation, proposing a lightweight U-Net model incorporating color-space fusion and preprocessing. Results: Experiments using the AdobeComposition-1k dataset demonstrate superior performance compared to traditional methods, achieving higher accuracy, faster processing speed, and improved boundary preservation. Novelty: The proposed model effectively combines deep learning with fusion techniques, enhancing matting quality while maintaining robustness across various environmental conditions. Implications: These findings highlight the potential of integrating fusion techniques with deep learning for image matting, offering valuable insights for future research in automated image processing applications, including augmented reality, gaming, and interactive video technologies. Highlights: Better Precision: Fusion techniques enhance fine detail preservation. Faster Processing: Lightweight U-Net improves speed and accuracy. Wide Applications: Useful for AR, gaming, and video processing. Keywords: Deep image matting, computer vision, deep learning, fusion techniques, U-Net
Landforms on the earth surface are so expensive to map or monitor. Remote Sensing observations from space platforms provide a synoptic view of terrain on images. Satellite multispectral data have an advantage in that the image data in various bands can be subjected to digital enhancement techniques for highlighting contrasts in objects for improving image interpretability. Geomorphological mapping involves the partitioning of the terrain into conceptual spatial entities based upon criteria. This paper illustrates how geomorphometry and mapping approaches can be used to produce geomorphological information related to the land surface, landforms and geomorphic systems. Remote Sensing application at Razzaza–Habbaria area southwest of Razz
... Show MoreHigh-resolution imaging of celestial bodies, especially the sun, is essential for understanding dynamic phenomena and surface details. However, the Earth's atmospheric turbulence distorts the incoming light wavefront, which poses a challenge for accurate solar imaging. Solar granulation, the formation of granules and intergranular lanes on the sun's surface, is important for studying solar activity. This paper investigates the impact of atmospheric turbulence-induced wavefront distortions on solar granule imaging and evaluates, both visually and statistically, the effectiveness of Zonal Adaptive Optics (AO) systems in correcting these distortions. Utilizing cellular automata for granulation modelling and Zonal AO correction methods,
... Show MoreThe study of biomechanical indicators in the arc of the run and the upgrading stage is one of the important variables that affect the nature of the upgrading and thus affect the result of the race due to the importance of these stages and the consequent variables during the last steps. That’s why, the jump-trainings based on assistant means or body weight positively affect the step-time for each of the three steps in the acceleration arc. As well as, it focuses on the momentary strength of each step at this stage. It also significantly affects the speed of motor performance to suit the activity in which the runner needs to perform perfect steps with high flow in order to convert the horizontal speed to a vertical one. This is achieved thr
... Show MoreThe current study performed in order to detect and quantify epicatechin in two tea samples of Camellia sinensis (black and green tea) by thin layer chromatography (TLC) and high performance liquid chromatography (HPLC). Extraction of epicatechin from black and green tea was done by using two different methods: maceration (cold extraction method) and decoction (hot extraction method). Qualitative and quantitative determinations of epicatechin in two tea samples were investigated. Epicatechin identification was made by utilizing preliminary chemical tests and TLC. This identification was also boosted by HPLC and then quantified epicatechin in all ethyl acetate fractions of two tea samples. This research revealed the existence of epica
... Show MoreA rapid high performance liquid chromatography method for the determination of sphinganine (Sa) and sphingosine (So) in urine samples by employing a silica-based monolithic column is described. The samples were first extracted using ethyl acetate and derivatized using ortho-phthaldialdehyde in the presence of 2-mercaptoethanol. C20 sphinganine was used as internal standard. Under the optimized conditions, separation was achieved using a mixture of methanol:water (93:7, v/v), column temperature at 30°C, flow rate of 1 mL min−1, and an injection volume of 10 μL. Good linearity was obtained for Sa and So over the concentration range 20–500 ng mL−1(correlation coefficients ≥0.9978). The detection limits were 0.45 ng mL−1 for Sa and
... Show MoreThe current study aims to assess the effectiveness of the cognitive-behavioral programs in reducing stuttering and social anxiety among high-school students. The researchers used the experimental design. The sample consists of (20) male students who reported the highest score on the stuttering severity scale and social anxiety scale. The sample was divided into experimental and control groups (each group consists of 10 participants). The researcher used the type and severity of stuttering scale developed by Onslow et al (2003), translated by Mahmoud Ismail and the social anxiety scale was prepared by the authors. The results showed that there are statistically significant differences in pre-post and follow-up tests amongst the experiment
... Show MoreAbstract
The multiple linear regression model of the important regression models used in the analysis for different fields of science Such as business, economics, medicine and social sciences high in data has undesirable effects on analysis results . The multicollinearity is a major problem in multiple linear regression. In its simplest state, it leads to the departure of the model parameter that is capable of its scientific properties, Also there is an important problem in regression analysis is the presence of high leverage points in the data have undesirable effects on the results of the analysis , In this research , we present some of
... Show More