General Background: Deep image matting is a fundamental task in computer vision, enabling precise foreground extraction from complex backgrounds, with applications in augmented reality, computer graphics, and video processing. Specific Background: Despite advancements in deep learning-based methods, preserving fine details such as hair and transparency remains a challenge. Knowledge Gap: Existing approaches struggle with accuracy and efficiency, necessitating novel techniques to enhance matting precision. Aims: This study integrates deep learning with fusion techniques to improve alpha matte estimation, proposing a lightweight U-Net model incorporating color-space fusion and preprocessing. Results: Experiments using the AdobeComposition-1k dataset demonstrate superior performance compared to traditional methods, achieving higher accuracy, faster processing speed, and improved boundary preservation. Novelty: The proposed model effectively combines deep learning with fusion techniques, enhancing matting quality while maintaining robustness across various environmental conditions. Implications: These findings highlight the potential of integrating fusion techniques with deep learning for image matting, offering valuable insights for future research in automated image processing applications, including augmented reality, gaming, and interactive video technologies. Highlights: Better Precision: Fusion techniques enhance fine detail preservation. Faster Processing: Lightweight U-Net improves speed and accuracy. Wide Applications: Useful for AR, gaming, and video processing. Keywords: Deep image matting, computer vision, deep learning, fusion techniques, U-Net
The problem in the design of a cam is the analyzing of the mechanisms and dynamic forces that effect on the family of parametric polynomials for describing the motion curve. In present method, two ways have been taken for optimization of the cam size, first the high dynamic loading (such that impact and elastic stress waves propagation) from marine machine tool which translate by the roller follower to the cam surface and varies with time causes large contact loads and second it must include the factors of kinematics features including the acceleration, velocity, boundary condition and the unsymmetrical curvature of the cam profile for the motion curve.
In the theoretical solution
... Show MoreAcrylic polymer/cement nanocomposites in dark and light colors have been developed for coating floors and swimming pools. This work aims to emphasize the effect of cement filling on the mechanical parameters, thermal stability, and wettability of acrylic polymer. The preparation was carried out using the casting method from acrylic polymer coating solution, which was added to cement nanoparticles (65 nm) with weight concentrations of (0, 1, 2, 4, and 8 wt%) to achieve high-quality specifications and good adhesion. Maximum impact strength and Hardness shore A were observed at cement ratios of 2 wt% and 4 wt%, respectively. Changing the filling ratio has a significant effect on the strain of the nanocomposites. The contact angle was i
... Show MoreEmbedding an identifying data into digital media such as video, audio or image is known as digital watermarking. In this paper, a non-blind watermarking algorithm based on Berkeley Wavelet Transform is proposed. Firstly, the embedded image is scrambled by using Arnold transform for higher security, and then the embedding process is applied in transform domain of the host image. The experimental results show that this algorithm is invisible and has good robustness for some common image processing operations.
Background/Objectives: The purpose of this study was to classify Alzheimer’s disease (AD) patients from Normal Control (NC) patients using Magnetic Resonance Imaging (MRI). Methods/Statistical analysis: The performance evolution is carried out for 346 MR images from Alzheimer's Neuroimaging Initiative (ADNI) dataset. The classifier Deep Belief Network (DBN) is used for the function of classification. The network is trained using a sample training set, and the weights produced are then used to check the system's recognition capability. Findings: As a result, this paper presented a novel method of automated classification system for AD determination. The suggested method offers good performance of the experiments carried out show that the
... Show MoreThe concealment of data has emerged as an area of deep and wide interest in research that endeavours to conceal data in a covert and stealth manner, to avoid detection through the embedment of the secret data into cover images that appear inconspicuous. These cover images may be in the format of images or videos used for concealment of the messages, yet still retaining the quality visually. Over the past ten years, there have been numerous researches on varying steganographic methods related to images, that emphasised on payload and the quality of the image. Nevertheless, a compromise exists between the two indicators and to mediate a more favourable reconciliation for this duo is a daunting and problematic task. Additionally, the current
... Show MoreThe Frequency-hopping Spread Spectrum (FHSS) systems and techniques are using in military and civilianradar recently and in the communication system for securing the information on wireless communications link channels, for example in the Wi-Fi 8.02.X IEEE using multiple number bandwidth and frequencies in the wireless channel in order to hopping on them for increasing the security level during the broadcast, but nowadays FHSS problem, which is, any Smart Software Defined Radio (S-SDR) can easily detect a wireless signal at the transmitter and the receiver for the hopping sequence in both of these, then duplicate this sequence in order to hack the signal on both transmitter and receiver messages using the order of the se
... Show MoreImage compression is an important tool to reduce the bandwidth and storage
requirements of practical image systems. To reduce the increasing demand of storage
space and transmission time compression techniques are the need of the day. Discrete
time wavelet transforms based image codec using Set Partitioning In Hierarchical
Trees (SPIHT) is implemented in this paper. Mean Square Error (MSE), Peak Signal
to Noise Ratio (PSNR) and Maximum Difference (MD) are used to measure the
picture quality of reconstructed image. MSE and PSNR are the most common picture
quality measures. Different kinds of test images are assessed in this work with
different compression ratios. The results show the high efficiency of SPIHT algori