Preferred Language
Articles
/
zhgreZQBVTCNdQwClhk4
Production, Extraction and Purification of Bacillus licheniformis FH4-IRQ Alkaline Phosphatase
...Show More Authors

Publication Date
Mon Jun 30 2014
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Kinetic of Alkaloids Extraction from Plant by Batch Pertraction in Rotating Discs Contactor
...Show More Authors

A liquid membrane process of Alkaloids extraction from Datura Innoxia solution was studied applying pertraction process in rotating discs contactor (RDC). Decane as a liquid membrane and dilute sulphuric acid as stripping solution were used. The effect of the fundamental parameters influencing the transport process, eg type of solvent used, effect of disks speed, amount of liquid membrane and effect of pH for feed and strip solution. The transport of alkaloids was analysed on the basis of kinetic laws of two consecutive irreversible first order reactions. Thus, the kinetic parameters (k1, k1,, tmax, and) for the transport of alkaloids were determined. The effect of organic membrane type on percentage of Alkaloids transport was found to be i

... Show More
Publication Date
Fri Dec 30 2011
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Extraction of Valuable Metals From Spent Hydrodesulfurization Catalyst By Two Stage Leaching Method
...Show More Authors

Spent hydrodesulfurization (Co-Mo/γ-Al2O3) catalyst generally contains valuable metals like molybdenum (Mo), cobalt (Co), aluminium (Al) on a supporting material, such as γ-Al2O3. In the present study, a two stages alkali/acid leaching process was conducted to study leaching of cobalt, molybdenum and aluminium from Co-Mo/γ-Al2O3 catalyst. The acid leaching of spent catalyst, previously treated by alkali solution to remove molybdenum, yielded a solution rich in cobalt and aluminium.

View Publication Preview PDF
Publication Date
Mon Apr 03 2023
Journal Name
Journal Of Al-qadisiyah For Computer Science And Mathematics
A General Overview on the Categories of Image Features Extraction Techniques: A Survey
...Show More Authors

In the image processing’s field and computer vision it’s important to represent the image by its information. Image information comes from the image’s features that extracted from it using feature detection/extraction techniques and features description. Features in computer vision define informative data. For human eye its perfect to extract information from raw image, but computer cannot recognize image information. This is why various feature extraction techniques have been presented and progressed rapidly. This paper presents a general overview of the feature extraction categories for image.

View Publication Preview PDF
Crossref
Publication Date
Mon Mar 23 2020
Journal Name
Baghdad Science Journal
Quantitative Determination of Fluoroquinolones in Contaminated Soils by HPLC with Solid-Phase Extraction
...Show More Authors

This work reports the development of an analytical method for the simultaneous analysis of three fluoroquinolones; ciprofloxacin (CIP), norfloxacin (NOR) and ofloxacin (OFL) in soil matrix. The proposed method was performed by using microwave-assisted extraction (MAE), solid-phase extraction (SPE) for samples purification, and finally the pre-concentrated samples were analyzed by HPLC detector. In this study, various organic solvents were tested to extract the test compounds, and the extraction performance was evaluated by testing various parameters including extraction solvent, solvent volume, extraction time, temperature and number of the extraction cycles. The current method showed a good linearity over the concentration ranging from

... Show More
View Publication Preview PDF
Scopus (5)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Sat Apr 15 2023
Journal Name
Journal Of Robotics
A New Proposed Hybrid Learning Approach with Features for Extraction of Image Classification
...Show More Authors

Image classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class

... Show More
View Publication
Scopus (5)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Fri Apr 01 2011
Journal Name
Chinese Chemical Letters
Extraction of cobalt(II) from aqueous solution by N,N′-carbonyl difatty amides
...Show More Authors

The development of economic and environmentally friendly extractants to recover cobalt metal is required due to the increasing demand for this metal. In this study, solvent extraction of Co(II) from aqueous solution using a mixture of N,N0-carbonyl difatty amides (CDFAs) synthesised from palm oil as the extractant was carried out. The effects of various parameters such as acid, contact time, extractant concentration, metal ion concentration and stripping agent and the separation of Co(II) from other metal ions such as Fe(II), Ni(II), Zn(III) and Cd(II) were investigated. It was found that the extraction of Co(II) into the organic phase involved the formation of 1:1 complexes. Co(II) was successfully separated from commonly associated metal

... Show More
View Publication
Scopus (24)
Crossref (14)
Scopus Clarivate Crossref
Publication Date
Sat Apr 15 2023
Journal Name
Journal Of Robotics
A New Proposed Hybrid Learning Approach with Features for Extraction of Image Classification
...Show More Authors

Image classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class

... Show More
View Publication
Scopus (5)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Tue Mar 24 2009
Journal Name
كتاب الوقائع /المؤتمر العلمي الثالث لكلية العلوم جامعة بغداد
Using antibiotics as mutagenic and curing agents for Prodigiosin Production By Serratia marcescens
...Show More Authors

The effect of different antibiotics on growth pigment and plasmid curing of Serratia marcescens were studied, S. marcescens was cultured in media containing(16_500)µg/ml of antibiotics, curing mutants unable to produce prodigiosin and lost one plasmid band were obtained of of ampicillin, amoxillin, antibiotics concentrations (64 500) µg/ml metheprim, ultracloxam, azithromycin, cephalexin and erythromycin treated with (350 500) µg/ml of The mutant cells rose- light color and and refampicin revealed S.marcescens inhibited ciprodar and tetracyclin, lincomycin did not lost the plasmid band chlaforan

Publication Date
Thu Jul 01 2021
Journal Name
Computers & Electrical Engineering
A new proposed statistical feature extraction method in speech emotion recognition
...Show More Authors

View Publication
Scopus (38)
Crossref (27)
Scopus Clarivate Crossref
Publication Date
Tue Dec 05 2023
Journal Name
Baghdad Science Journal
AlexNet-Based Feature Extraction for Cassava Classification: A Machine Learning Approach
...Show More Authors

Cassava, a significant crop in Africa, Asia, and South America, is a staple food for millions. However, classifying cassava species using conventional color, texture, and shape features is inefficient, as cassava leaves exhibit similarities across different types, including toxic and non-toxic varieties. This research aims to overcome the limitations of traditional classification methods by employing deep learning techniques with pre-trained AlexNet as the feature extractor to accurately classify four types of cassava: Gajah, Manggu, Kapok, and Beracun. The dataset was collected from local farms in Lamongan Indonesia. To collect images with agricultural research experts, the dataset consists of 1,400 images, and each type of cassava has

... Show More
View Publication Preview PDF
Scopus (2)
Scopus Crossref