This paper presents a combination of enhancement techniques for fingerprint images affected by different type of noise. These techniques were applied to improve image quality and come up with an acceptable image contrast. The proposed method included five different enhancement techniques: Normalization, Histogram Equalization, Binarization, Skeletonization and Fusion. The Normalization process standardized the pixel intensity which facilitated the processing of subsequent image enhancement stages. Subsequently, the Histogram Equalization technique increased the contrast of the images. Furthermore, the Binarization and Skeletonization techniques were implemented to differentiate between the ridge and valley structures and to obtain one pixel-wide lines. Finally, the Fusion technique was used to merge the results of the Histogram Equalization process with the Skeletonization process to obtain the new high contrast images. The proposed method was tested in different quality images from National Institute of Standard and Technology (NIST) special database 14. The experimental results are very encouraging and the current enhancement method appeared to be effective by improving different quality images.
A new approach for baud time (or baud rate) estimation of a random binary signal is presented. This approach utilizes the spectrum of the signal after nonlinear processing in a way that the estimation error can be reduced by simply increasing the number of the processed samples instead of increasing the sampling rate. The spectrum of the new signal is shown to give an accurate estimate about the baud time when there is no apriory information or any restricting preassumptions. The performance of the estimator for random binary square waves perturbed by white Gaussian noise and ISI is evaluated and compared with that of the conventional estimator of the zero crossing detector.
Semantic segmentation is an exciting research topic in medical image analysis because it aims to detect objects in medical images. In recent years, approaches based on deep learning have shown a more reliable performance than traditional approaches in medical image segmentation. The U-Net network is one of the most successful end-to-end convolutional neural networks (CNNs) presented for medical image segmentation. This paper proposes a multiscale Residual Dilated convolution neural network (MSRD-UNet) based on U-Net. MSRD-UNet replaced the traditional convolution block with a novel deeper block that fuses multi-layer features using dilated and residual convolution. In addition, the squeeze and execution attention mechanism (SE) and the s
... Show MoreThe Internet image retrieval is an interesting task that needs efforts from image processing and relationship structure analysis. In this paper, has been proposed compressed method when you need to send more than a photo via the internet based on image retrieval. First, face detection is implemented based on local binary patterns. The background is notice based on matching global self-similarities and compared it with the rest of the image backgrounds. The propose algorithm are link the gap between the present image indexing technology, developed in the pixel domain, and the fact that an increasing number of images stored on the computer are previously compressed by JPEG at the source. The similar images are found and send a few images inst
... Show MoreThis paper deals with proposing new lifting scheme (HYBRID Algorithm) that is capable of preventing images and documents which are fraud through decomposing there in to the real colors value arrays (red, blue and green) to create retrieval keys for its properties and store it in the database and then check the document originality by retrieve the query image or document through the decomposition described above and compare the predicted color values (retrieval keys) of the query document with those stored in the database. The proposed algorithm has been developed from the two known lifting schemes (Haar and D4) by merging them to find out HYBRID lifting scheme. The validity and accuracy of the proposed algorithm have been ev
... Show MoreA new design of manifold flow injection (FI) coupling with a merging zone technique was studied for sulfamethoxazole determination spectrophotometrically. The semiautomated FI method has many advantages such as being fast, simple, highly accurate, economical with high throughput . The suggested method based on the production of the orange- colored compound of SMZ with (NQS)1,2-Naphthoquinone-4-Sulphonic acid Sodium salt in alkaline media NaOH at λmax 496nm.The linearity range of sulfamethoxazole was 3-100 μg. mL-1, with (LOD) was 0.593 μg. mL-1 and the RSD% is about 1.25 and the recovery is 100.73%. All various physical and chemical parameters that have an effect on the stability and development of
... Show MoreOne of the significant stages in computer vision is image segmentation which is fundamental for different applications, for example, robot control and military target recognition, as well as image analysis of remote sensing applications. Studies have dealt with the process of improving the classification of all types of data, whether text or audio or images, one of the latest studies in which researchers have worked to build a simple, effective, and high-accuracy model capable of classifying emotions from speech data, while several studies dealt with improving textual grouping. In this study, we seek to improve the classification of image division using a novel approach depending on two methods used to segment the images. The first
... Show MoreFace detection systems are based on the assumption that each individual has a unique face structure and that computerized face matching is possible using facial symmetry. Face recognition technology has been employed for security purposes in many organizations and businesses throughout the world. This research examines the classifications in machine learning approaches using feature extraction for the facial image detection system. Due to its high level of accuracy and speed, the Viola-Jones method is utilized for facial detection using the MUCT database. The LDA feature extraction method is applied as an input to three algorithms of machine learning approaches, which are the J48, OneR, and JRip classifiers. The experiment’s
... Show MoreHM Al-Dabbas, RA Azeez, AE Ali, Iraqi Journal of Science, 2023