Preferred Language
Articles
/
zhb4zIcBVTCNdQwCdmEW
Reliable iterative methods for 1D Swift–Hohenberg equation
...Show More Authors

Crossref
View Publication
Publication Date
Sat Sep 15 2018
Journal Name
Journal Of The College Of Education For Women
Estimation of the Risk of Water Erosion in Jawarta District in Sulaymaniyah Governorate Using the Global Equation for Soil Loss (USLE)
...Show More Authors

The present research deals with the spatial variance analysis in Jwartadistrict and conducting a comparison on the spatial and seasonal changes of the vegetation cover between (2007-2013) in order to deduce the relationship between the vegetation density and the areas which are exposed to the risk of water erosion by using Plant Variation Index  NDVI) C (coefficient and by using Satellite images of Landsat satellite which are taken in 2/7/2007 and Satellite images of Landsat satellite taken in 11/1/ 2013, the programs of remote sensitivity and the Geographic Information Systems.

    The study reveals that there is a variance in the density of vegetation cover of the area under study betwee 2007 and 2013. Howev

... Show More
View Publication Preview PDF
Publication Date
Fri Apr 01 2022
Journal Name
Baghdad Science Journal
Numerical Solutions of Two-Dimensional Vorticity Transport Equation Using Crank-Nicolson Method
...Show More Authors

This paper is concerned with the numerical solutions of the vorticity transport equation (VTE) in two-dimensional space with homogenous Dirichlet boundary conditions. Namely, for this problem, the Crank-Nicolson finite difference equation is derived.  In addition, the consistency and stability of the Crank-Nicolson method are studied. Moreover, a numerical experiment is considered to study the convergence of the Crank-Nicolson scheme and to visualize the discrete graphs for the vorticity and stream functions. The analytical result shows that the proposed scheme is consistent, whereas the numerical results show that the solutions are stable with small space-steps and at any time levels.

View Publication Preview PDF
Scopus (5)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Tue Jun 20 2023
Journal Name
Baghdad Science Journal
Delay differential equation of the 2nd order and it's an oscillation yardstick
...Show More Authors

This study focuses on studying an oscillation of a second-order delay differential equation. Start work, the equation is introduced here with adequate provisions. All the previous is braced by theorems and examplesthat interpret the applicability and the firmness of the acquired provisions

View Publication Preview PDF
Scopus Crossref
Publication Date
Tue May 01 2018
Journal Name
Journal Of Physics: Conference Series
The Approximate Solution of Fractional Damped Burger’s Equation and its Statistical Properties
...Show More Authors

View Publication
Scopus (1)
Scopus Clarivate Crossref
Publication Date
Tue Jan 28 2020
Journal Name
Journal Of Accounting And Financial Studies ( Jafs )
Forecasting the performance and profitability of companies using the equation of Tobin’sq
...Show More Authors

The main objective and primary concern to every investor not only to achieve a greater return on his or her investments, but also to create the largest possible value of these investments the, researchers and those interested in the field of investment and financial analysis  try to develop standards  for performance      valuation      is guided through the                                     &nbsp

... Show More
View Publication Preview PDF
Publication Date
Fri Jan 01 2016
Journal Name
مجلة المستنصرية للعلوم والتربية
Calculation of Electron Drift Velocity in Xenon Gas Using Boltzmann Equation Analysis
...Show More Authors

Publication Date
Tue Sep 01 2020
Journal Name
Baghdad Science Journal
Numerical Solution of Mixed Volterra – Fredholm Integral Equation Using the Collocation Method
...Show More Authors

Volterra Fredholm integral equations (VFIEs) have a massive interest from researchers recently. The current study suggests a collocation method for the mixed Volterra - Fredholm integral equations (MVFIEs)."A point interpolation collocation method is considered by combining the radial and polynomial basis functions using collocation points". The main purpose of the radial and polynomial basis functions is to overcome the singularity that could associate with the collocation methods. The obtained interpolation function passes through all Scattered Point in a domain and therefore, the Delta function property is the shape of the functions. The exact solution of selective solutions was compared with the results obtained

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Fri Apr 01 2016
Journal Name
Communications In Nonlinear Science And Numerical Simulation
Simultaneous determination of time and space-dependent coefficients in a parabolic equation
...Show More Authors

View Publication
Scopus (22)
Crossref (11)
Scopus Clarivate Crossref
Publication Date
Sun Sep 24 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Algorithm to Solve Linear Volterra Fractional Integro-Differential Equation via Elzaki Transform
...Show More Authors

In this work, Elzaki transform (ET) introduced by Tarig Elzaki is applied to solve linear Volterra fractional integro-differential equations (LVFIDE). The fractional derivative is considered in the Riemman-Liouville sense. The procedure is based on the application of (ET) to (LVFIDE) and using properties of (ET) and its inverse. Finally, some examples are solved to show that this is computationally efficient and accurate.

View Publication Preview PDF
Publication Date
Mon Sep 25 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Algorithm to Solve Linear Volterra Fractional Integro-Differential Equation via Elzaki Transform
...Show More Authors

       In this work, Elzaki transform (ET) introduced by Tarig Elzaki is applied to solve linear Volterra fractional integro-differential equations (LVFIDE). The fractional derivative is considered in the Riemman-Liouville sense. The procedure is based on the application of (ET) to (LVFIDE) and using properties of (ET) and its inverse. Finally, some examples are solved to show that this is computationally efficient and accurate.

View Publication Preview PDF