In this work, we have used the QCD dynamic scenario of the quark gluon interaction to investigate and study photon emission theoretically based on quantum theory. The QCD theory is implemented by deriving the photon emission rate equation of the state of ideal QGP at a chemical potential. The photon rate of the quark-gluon interaction has to be calculated for the anti up-gluon interaction in the g → γ system at the temperature of system with critical temperature ( 132.38, , and 198.57) MeV and photon energy ( GeV. We investigated a significant effect of critical temperature, strength coupling, and photon energy on the photon rate contribution. Here, the increased photon emission rate and decreased streng
... Show MoreThis investigation aims to explore the potential of waterworks sludge (WS), low-cost byproduct of water treatment processes, as a sorbent for removing Congo Red (CR) dyes. This will be achieved by precipitating nano-sized (MgAl-LDH)-layered double hydroxide onto the surface of the sludge. The efficiency of utilizing MgAl-LDH to modify waterworks sludge (MWS) for use in permeable reactive barrier technology was confirmed through analysis with Fourier transform infrared and X-ray diffraction. The isotherm model was employed to elucidate the adsorption mechanisms involved in the process. Furthermore, the COMSOL model was utilized to establish a continuous testing model for the analysis of contaminant transport under diverse conditions. A st
... Show MoreThis research was conducted to measure the safety of heat stable enterotoxin a (STa) produced by enterotoxigenic Escherichia coli, through studying its toxic effect on mice since it showed a promising effect in reducing the proliferation of colorectal cancer cells. The cytogenetic effect was determined after giving five different doses (100, 200, 400, 800 and 1600)μg/Kg in comparison with negative (phosphate buffer saline / PBS) and positive (mitomycin C/ MMC, at doses of 2 and 5μg/Kg) controls on mouse bone marrow cells by employing the following parameters: mitotic index, chromosomal aberrations and micronucleus, also, the serum level of liver functional enzymes (GOT, GPT, ALP) was recorded. In addition, lethal dose 50 (LD 50) with cert
... Show MoreA Stereomicroscopic Evaluation of Four Endodontic Sealers Penetration into Artificial Lateral Canals Using Gutta-Percha Single Cone Obturation Technique, Omar Jihad Banawi*, Raghad
In drilling processes, the rheological properties pointed to the nature of the run-off and the composition of the drilling mud. Drilling mud performance can be assessed for solving the problems of the hole cleaning, fluid management, and hydraulics controls. The rheology factors are typically termed through the following parameters: Yield Point (Yp) and Plastic Viscosity (μp). The relation of (YP/ μp) is used for measuring of levelling for flow. High YP/ μp percentages are responsible for well cuttings transportation through laminar flow. The adequate values of (YP/ μp) are between 0 to 1 for the rheological models which used in drilling. This is what appeared in most of the models that were used in this study. The pressure loss
... Show MoreAfamin, which is a human plasma glycoprotein, a putative multifunctional transporter of hydrophobic molecules and a marker for metabolic syndrome. Afamin concentration have been proposed to have a significant role as a predictor of metabolic disorders. Since NAFLD is associated with metabolic risk factors, e.g., dyslipidemia, insulin resistance and visceral obesity, it is considered as the hepatic manifestation of the metabolic syndrome. The objective of this study is to determine Afamin levels in hypothyroid patients with and without fatty liver disease and compare the results with controls. Also to study the relationship of Afamin level with the Anthropometric and Clinical Features (Age, Gender, BMI and Duration of Hypothyroidism) , Serum
... Show MoreIn this work, solid random gain media were fabricated from laser dye solutions containing nanoparticles as scattering centers. Two different rhodamine dyes (123 and 6G) were used to host the highly-pure titanium dioxide nanoparticles to form the random gain media. The spectroscopic characteristics (mainly fluorescence) of these media were determined and studied. These random gain media showed laser emission in the visible region of electromagnetic spectrum. Fluorescence characteristics can be controlled to few nanometers by adjusting the characteristics of the host and nanoparticles as well as the preparation conditions of the samples. Emission of narrow linewidth (3nm) and high intensity in the visible region (533-537nm) was obtained.