Preferred Language
Articles
/
zhYEBYcBVTCNdQwCIi1e
A Robust Handwritten Numeral Recognition Using Hybrid Orthogonal Polynomials and Moments
...Show More Authors

Numeral recognition is considered an essential preliminary step for optical character recognition, document understanding, and others. Although several handwritten numeral recognition algorithms have been proposed so far, achieving adequate recognition accuracy and execution time remain challenging to date. In particular, recognition accuracy depends on the features extraction mechanism. As such, a fast and robust numeral recognition method is essential, which meets the desired accuracy by extracting the features efficiently while maintaining fast implementation time. Furthermore, to date most of the existing studies are focused on evaluating their methods based on clean environments, thus limiting understanding of their potential application in more realistic noise environments. Therefore, finding a feasible and accurate handwritten numeral recognition method that is accurate in the more practical noisy environment is crucial. To this end, this paper proposes a new scheme for handwritten numeral recognition using Hybrid orthogonal polynomials. Gradient and smoothed features are extracted using the hybrid orthogonal polynomial. To reduce the complexity of feature extraction, the embedded image kernel technique has been adopted. In addition, support vector machine is used to classify the extracted features for the different numerals. The proposed scheme is evaluated under three different numeral recognition datasets: Roman, Arabic, and Devanagari. We compare the accuracy of the proposed numeral recognition method with the accuracy achieved by the state-of-the-art recognition methods. In addition, we compare the proposed method with the most updated method of a convolutional neural network. The results show that the proposed method achieves almost the highest recognition accuracy in comparison with the existing recognition methods in all the scenarios considered. Importantly, the results demonstrate that the proposed method is robust against the noise distortion and outperforms the convolutional neural network considerably, which signifies the feasibility and the effectiveness of the proposed approach in comparison to the state-of-the-art recognition methods under both clean noise and more realistic noise environments.

Scopus Clarivate Crossref
View Publication
Publication Date
Sat Dec 01 2018
Journal Name
Al-khwarizmi Engineering Journal
Biodegradation of Diesel Contaminated Soil Using Single Bacterial Strains and a Mixed Bacterial Consortium
...Show More Authors

This study was conducted to assess the hydrocarbon degradation abilities of Sphingomonas paucimobilis, Pentoae species, Staphylococcus aureus, and Enterobacter cloacae, which isolated from diesel contaminated soil samples. Single strains and mixed bacterial consortia have been investigated their ability to degrade 1.0 % (v/v) of diesel oil in Bushnell- Haas medium as sole.carbon.and.energy.source. At temperature 30C, the individual.bacterial.isolates exhibited low growth and low degradation.than did the.mixed. bacterial.culture. After 28 days.of incubation the.combination.of four isolates degraded.an upper limit.of diesel  88.4%. This was. continued.by 85.1% by S. paucimobilis, 84 % by Pentoae sp., 79% by S.aureus, and

... Show More
View Publication Preview PDF
Publication Date
Fri Nov 01 2019
Journal Name
Journal Of Engineering
A Comparison Study of Brine Desalination using Direct Contact and Air Gap Membrane Distillation
...Show More Authors

Membrane distillation (MD) is a hopeful desalination technique for brine (salty) water. In this research, Direct Contact Membrane Distillation (DCMD) and  Air Gap Membrane Distillation (AGMD) will be used. The sample used is from Shat Al –Arab water (TDS=2430 mg/l). A polyvinylidene fluoride (PVDF) flat sheet membrane was used as a flat sheet form with a plate and frame cell. Several parameters were studied, such as; operation time, feed temperature, permeate temperature, feed flow rate. The results showed that with time, the flux decreases because of the accumulated fouling and scaling on the membrane surface. Feed temperature and feed flow rate had a positive effect on the permeate flux, while permeate temperatu

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Tue Dec 01 2020
Journal Name
Baghdad Science Journal
A Competitive Study Using UV and Ozone with H2O2 in Treatment of Oily Wastewater
...Show More Authors

          In this study, ultraviolet (UV), ozone techniques with hydrogen peroxide oxidant were used to treat the wastewater which is produced from South Baghdad Power Station using lab-scale system. From UV-H2O2 experiments, it was shown that the optimum exposure time was 80 min. At this time, the highest removal percentages of oil, COD, and TOC were 84.69 %, 56.33 % and 50 % respectively. Effect of pH on the contaminants removing was studied in the range of (2-12). The best oil, COD, and TOC removal percentages (69.38 %, 70 % and 52 %) using H2O2/UV were at pH=12. H2O2/ozone experiments exhibited better performance compared to

... Show More
View Publication Preview PDF
Scopus (11)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Sun Jan 01 2023
Journal Name
Journal Of Intelligent Systems
A study on predicting crime rates through machine learning and data mining using text
...Show More Authors
Abstract<p>Crime is a threat to any nation’s security administration and jurisdiction. Therefore, crime analysis becomes increasingly important because it assigns the time and place based on the collected spatial and temporal data. However, old techniques, such as paperwork, investigative judges, and statistical analysis, are not efficient enough to predict the accurate time and location where the crime had taken place. But when machine learning and data mining methods were deployed in crime analysis, crime analysis and predication accuracy increased dramatically. In this study, various types of criminal analysis and prediction using several machine learning and data mining techniques, based o</p> ... Show More
View Publication
Scopus (12)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Tue Oct 30 2018
Journal Name
Iraqi Journal Of Physics
Evaluation of radioactivity of cereals and legumes using a nuclear impact detector CN-85
...Show More Authors

The research aims to evaluate the radioactivity in elected samples of cereals and legume which are wide human consumption in Iraq using Nuclear Track Detectors (NTDs) model CN-85.
The samples were prepared scientifically according to references in this field. After 150 days of exposure, the detector were collected and chemically treated according to scientific sources (etching chemical), nuclear effects have been calculated using the optical microscope.
Radon (222Rn) concentration and uranium (238U) were calculated in unit Bq/m3 and (ppm), the results indicate that the highest concentration of radon and uranium was in yellow corn where the concentration of radon was 137.17×102 Bq/m3 and uranium concentration 2.63 (ppm). The lowest

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Wed Jul 06 2022
Journal Name
Journal Of Al-qadisiyah For Computer Science And Mathematics
Image Compression using Polynomial Coding Techniques: A review
...Show More Authors

Publication Date
Sun Jul 09 2023
Journal Name
Journal Of Engineering
Improving IoT Applications Using a Proposed Routing Protocol
...Show More Authors

The main objective of this work is to propose a new routing protocol for wireless sensor network employed to serve IoT systems. The routing protocol has to adapt with different requirements in order to enhance the performance of IoT applications. The link quality, node depth and energy are used as metrics to make routing decisions. Comparison with other protocols is essential to show the improvements achieved by this work, thus protocols designed to serve the same purpose such as AODV, REL and LABILE are chosen to compare the proposed routing protocol with. To add integrative and holistic, some of important features are added and tested such as actuating and mobility. These features are greatly required by some of IoT applications and im

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Fri Jan 01 2016
Journal Name
Middle-east Journal Of Scientific Research
Question Classification Using Different Approach: A Whole Review
...Show More Authors

Preview PDF
Publication Date
Fri Jan 01 2016
Journal Name
Bio-inspired Computing – Theories And Applications
Image Segmentation Using Membrane Computing: A Literature Survey
...Show More Authors

View Publication
Scopus (11)
Crossref (5)
Scopus Crossref
Publication Date
Sun Dec 01 2024
Journal Name
Al-khwarizmi Engineering Journal
Defect Detection Using Thermography Camera Techniques: A review
...Show More Authors

Individuals across different industries, including but not limited to agriculture, drones, pharmaceuticals and manufacturing, are increasingly using thermal cameras to achieve various safety and security goals. This widespread adoption is made possible by advancements in thermal imaging sensor technology. The current literature provides an in-depth exploration of thermography camera applications for detecting faults in sectors such as fire protection, manufacturing, aerospace, automotive, non-destructive testing and structural material industries. The current discussion builds on previous studies, emphasising the effectiveness of thermography cameras in distinguishing undetectable defects by the human eye. Various methods for defect

... Show More
View Publication
Scopus (2)
Crossref (1)
Scopus Crossref