Preferred Language
Articles
/
zhYEBYcBVTCNdQwCIi1e
A Robust Handwritten Numeral Recognition Using Hybrid Orthogonal Polynomials and Moments
...Show More Authors

Numeral recognition is considered an essential preliminary step for optical character recognition, document understanding, and others. Although several handwritten numeral recognition algorithms have been proposed so far, achieving adequate recognition accuracy and execution time remain challenging to date. In particular, recognition accuracy depends on the features extraction mechanism. As such, a fast and robust numeral recognition method is essential, which meets the desired accuracy by extracting the features efficiently while maintaining fast implementation time. Furthermore, to date most of the existing studies are focused on evaluating their methods based on clean environments, thus limiting understanding of their potential application in more realistic noise environments. Therefore, finding a feasible and accurate handwritten numeral recognition method that is accurate in the more practical noisy environment is crucial. To this end, this paper proposes a new scheme for handwritten numeral recognition using Hybrid orthogonal polynomials. Gradient and smoothed features are extracted using the hybrid orthogonal polynomial. To reduce the complexity of feature extraction, the embedded image kernel technique has been adopted. In addition, support vector machine is used to classify the extracted features for the different numerals. The proposed scheme is evaluated under three different numeral recognition datasets: Roman, Arabic, and Devanagari. We compare the accuracy of the proposed numeral recognition method with the accuracy achieved by the state-of-the-art recognition methods. In addition, we compare the proposed method with the most updated method of a convolutional neural network. The results show that the proposed method achieves almost the highest recognition accuracy in comparison with the existing recognition methods in all the scenarios considered. Importantly, the results demonstrate that the proposed method is robust against the noise distortion and outperforms the convolutional neural network considerably, which signifies the feasibility and the effectiveness of the proposed approach in comparison to the state-of-the-art recognition methods under both clean noise and more realistic noise environments.

Scopus Clarivate Crossref
View Publication
Publication Date
Sat Feb 01 2020
Journal Name
Iop Conference Series: Materials Science And Engineering
Revealing the potentials of 3D modelling techniques; a comparison study towards data fusion from hybrid sensors
...Show More Authors
Abstract<p>The vast advantages of 3D modelling industry have urged competitors to improve capturing techniques and processing pipelines towards minimizing labour requirements, saving time and reducing project risk. When it comes to digital 3D documentary and conserving projects, laser scanning and photogrammetry are compared to choose between the two. Since both techniques have pros and cons, this paper approaches the potential issues of individual techniques in terms of time, budget, accuracy, density, methodology and ease to use. Terrestrial laser scanner and close-range photogrammetry are tested to document a unique invaluable artefact (Lady of Hatra) located in Iraq for future data fusion sc</p> ... Show More
View Publication
Scopus (12)
Crossref (7)
Scopus Clarivate Crossref
Publication Date
Fri Jan 01 2021
Journal Name
Desalination And Water Treatment
Elucidation of the removal of trivalent and divalent heavy metal ions from aqueous solutions using hybrid-porous composite ion-exchangers by nonlinear regression
...Show More Authors

View Publication
Scopus (28)
Crossref (25)
Scopus Clarivate Crossref
Publication Date
Fri Mar 01 2013
Journal Name
Journal Of Economics And Administrative Sciences
Robust Two-Step Estimation and Approximation Local Polynomial Kernel For Time-Varying Coefficient Model With Balance Longitudinal Data
...Show More Authors

      In this research, the nonparametric technique has been presented to estimate the time-varying coefficients functions for the longitudinal balanced data that characterized by observations obtained through (n) from the independent subjects, each one of them is measured repeatedly by group of  specific time points (m). Although the measurements are independent among the different subjects; they are mostly connected within each subject and the applied techniques is the Local Linear kernel LLPK technique. To avoid the problems of dimensionality, and thick computation, the two-steps method has been used to estimate the coefficients functions by using the two former technique. Since, the two-

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Sep 03 2023
Journal Name
Iraqi Journal Of Computers, Communications, Control & Systems Engineering (ijccce)
Efficient Iris Image Recognition System Based on Machine Learning Approach
...Show More Authors

HM Al-Dabbas, RA Azeez, AE Ali, IRAQI JOURNAL OF COMPUTERS, COMMUNICATIONS, CONTROL AND SYSTEMS ENGINEERING, 2023

View Publication
Publication Date
Fri Aug 16 2024
Journal Name
International Journal Of Mathematics And Computer Science
Artificial Intelligence Techniques to Identify Individuals through Palm Image Recognition
...Show More Authors

Artificial intelligence (AI) is entering many fields of life nowadays. One of these fields is biometric authentication. Palm print recognition is considered a fundamental aspect of biometric identification systems due to the inherent stability, reliability, and uniqueness of palm print features, coupled with their non-invasive nature. In this paper, we develop an approach to identify individuals from palm print image recognition using Orange software in which a hybrid of AI methods: Deep Learning (DL) and traditional Machine Learning (ML) methods are used to enhance the overall performance metrics. The system comprises of three stages: pre-processing, feature extraction, and feature classification or matching. The SqueezeNet deep le

... Show More
View Publication Preview PDF
Scopus (6)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Sun Jan 10 2016
Journal Name
British Journal Of Applied Science &amp; Technology
The Effect of Classification Methods on Facial Emotion Recognition ‎Accuracy
...Show More Authors

The interests toward developing accurate automatic face emotion recognition methodologies are growing vastly, and it is still one of an ever growing research field in the region of computer vision, artificial intelligent and automation. However, there is a challenge to build an automated system which equals human ability to recognize facial emotion because of the lack of an effective facial feature descriptor and the difficulty of choosing proper classification method. In this paper, a geometric based feature vector has been proposed. For the classification purpose, three different types of classification methods are tested: statistical, artificial neural network (NN) and Support Vector Machine (SVM). A modified K-Means clustering algorithm

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Mon Jan 01 2024
Journal Name
International Journal Of Mathematics And Computer Science
Artificial Intelligence Techniques to Identify Individuals through Palm Image Recognition
...Show More Authors

Artificial intelligence (AI) is entering many fields of life nowadays. One of these fields is biometric authentication. Palm print recognition is considered a fundamental aspect of biometric identification systems due to the inherent stability, reliability, and uniqueness of palm print features, coupled with their non-invasive nature. In this paper, we develop an approach to identify individuals from palm print image recognition using Orange software in which a hybrid of AI methods: Deep Learning (DL) and traditional Machine Learning (ML) methods are used to enhance the overall performance metrics. The system comprises of three stages: pre-processing, feature extraction, and feature classification or matching. The SqueezeNet deep le

... Show More
Scopus (6)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Thu Jun 01 2023
Journal Name
International Journal Of Electrical And Computer Engineering (ijece)
An optimized deep learning model for optical character recognition applications
...Show More Authors

The convolutional neural networks (CNN) are among the most utilized neural networks in various applications, including deep learning. In recent years, the continuing extension of CNN into increasingly complicated domains has made its training process more difficult. Thus, researchers adopted optimized hybrid algorithms to address this problem. In this work, a novel chaotic black hole algorithm-based approach was created for the training of CNN to optimize its performance via avoidance of entrapment in the local minima. The logistic chaotic map was used to initialize the population instead of using the uniform distribution. The proposed training algorithm was developed based on a specific benchmark problem for optical character recog

... Show More
View Publication
Scopus (2)
Scopus Crossref
Publication Date
Mon Sep 21 2020
Journal Name
Iraqi Journal For Electrical And Electronic Engineering
Emotion Recognition Based on Mining Sub-Graphs of Facial Components
...Show More Authors

Facial emotion recognition finds many real applications in the daily life like human robot interaction, eLearning, healthcare, customer services etc. The task of facial emotion recognition is not easy due to the difficulty in determining the effective feature set that can recognize the emotion conveyed within the facial expression accurately. Graph mining techniques are exploited in this paper to solve facial emotion recognition problem. After determining positions of facial landmarks in face region, twelve different graphs are constructed using four facial components to serve as a source for sub-graphs mining stage using gSpan algorithm. In each group, the discriminative set of sub-graphs are selected and fed to Deep Belief Network (DBN) f

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sun Feb 10 2019
Journal Name
Iraqi Journal Of Physics
Wear and mechanical prop erties of epoxy/MgO-SiO2 hybrid nanocomposites
...Show More Authors

Preparation of epoxy/MgO and epoxy/SiO2 nanocomposites is
studding. The nano composites were processed by different nano
fillers concentrations (0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.07 and
0.1 wt%). Epoxy resin and nanocomposites containing different
shape nano fillers of (MgO:SiO2 composites), are shear mixing with
ratio 1:1,with different nano hybrid fillers concentrations (0.025,
0.05, 0.1, 0.15, 0.2 and 0.25 wt%) to preparation of epoxy/(MgOSiO2)
hybrid nanocomposites. Experimental tests results indicate that
the composite materials have significantly higher modulus of
elasticity than the matrix material but the hybrid nanocomposites
have lower modulus of elasticity. The wear rate was decreased in
nanoc

... Show More
View Publication Preview PDF
Crossref