Numeral recognition is considered an essential preliminary step for optical character recognition, document understanding, and others. Although several handwritten numeral recognition algorithms have been proposed so far, achieving adequate recognition accuracy and execution time remain challenging to date. In particular, recognition accuracy depends on the features extraction mechanism. As such, a fast and robust numeral recognition method is essential, which meets the desired accuracy by extracting the features efficiently while maintaining fast implementation time. Furthermore, to date most of the existing studies are focused on evaluating their methods based on clean environments, thus limiting understanding of their potential application in more realistic noise environments. Therefore, finding a feasible and accurate handwritten numeral recognition method that is accurate in the more practical noisy environment is crucial. To this end, this paper proposes a new scheme for handwritten numeral recognition using Hybrid orthogonal polynomials. Gradient and smoothed features are extracted using the hybrid orthogonal polynomial. To reduce the complexity of feature extraction, the embedded image kernel technique has been adopted. In addition, support vector machine is used to classify the extracted features for the different numerals. The proposed scheme is evaluated under three different numeral recognition datasets: Roman, Arabic, and Devanagari. We compare the accuracy of the proposed numeral recognition method with the accuracy achieved by the state-of-the-art recognition methods. In addition, we compare the proposed method with the most updated method of a convolutional neural network. The results show that the proposed method achieves almost the highest recognition accuracy in comparison with the existing recognition methods in all the scenarios considered. Importantly, the results demonstrate that the proposed method is robust against the noise distortion and outperforms the convolutional neural network considerably, which signifies the feasibility and the effectiveness of the proposed approach in comparison to the state-of-the-art recognition methods under both clean noise and more realistic noise environments.
This study was conducted to explore the effects of using ionized water on the productive and physiological performance of Japanese quails (Coturnix japonica). Our study was conducted at a private farm from 20th April, 2016 to 13th July, 2016 (84 d). One hundred 42-day-old Japanese quail chicks were used, divided randomly into 5 groups with 4 replicates. Treatments consisted in a control group (T1 - normal water:), alkaline (T2 - pH 8 and T3 - pH 9), and acidic water (T4 - pH 6 and T5 - pH 5). All birds were fed a balanced diet of energy and protein. The egg production ratio, egg weight, cumulative number of eggs, egg mass, feed conversion ratio, productivity per hen per week, and effects on plasma lipids, uric acid, glucose, calcium, and ph
... Show MoreA simple, precise, and sensitive spectrophotometric method has been established for the analysis of doxycycline. The method includes direct charge transfer complexation of doxycycline withp-Bromanil in acetonitrileto form a colored complex. The intensely colored product formed was quantified based on the absorption band at 377 nm under optimum condition. Beer’s law is obeyed in the concentration range of 1–50 μg.mL-1 with molar absorptivity of 1.5725x104 L.mol-1.cm-1, Sandell's sensitivity index (0.0283) μg.cm-2, detection limit of 0.1064 μg.mL-1, quantification limit 0.3224 μg.mL-1 and association constant of the formed complex (0.75x103). The developed method could find application in routine quality control of doxycycline and has
... Show MoreReservoir characterization plays a crucial role in comprehending the distribution of formation properties and fluids within heterogeneous reservoirs. This knowledge is instrumental in constructing an accurate three-dimensional model of the reservoir, facilitating predictions regarding porosity, permeability, and fluid flow distribution. Among the various methods employed for reservoir characterization, the hydraulic flow unit stands out as a widely adopted approach. By effectively subdividing the reservoir into distinct zones, each characterized by unique petrophysical and geological properties, hydraulic flow units enable comprehensive reservoir analysis. The concept of the flow unit is closely tied to the flow zone indicator, a cr
... Show MoreKE Sharquie, HM Al-Hamamy, AA Noaimi, IA Al-Shawi, Journal of the Saudi Society of Dermatology & Dermatologic Surgery, 2011 - Cited by 9
The aim of this work was to estimate the concentrations of natural and artificial nuclides in some fertilized and unfertilized plant samples. These samples were collected and prepared in a petri dish for the measurements using gamma spectroscopy. The average values of 238U, 232Th, 40K, and 137Cs for the unfertilized plant samples were (11.964 ± 3.226, 8.273 ± 2.639, 402.436 ± 18.099, and 2.761 ± 1.613) respectively, and for the fertilized plant samples were (30.434 ± 5.282, 22.584 ± 4.620, 711.332 ± 25.806, and 6.986 ± 2.542) respectively. The average values of radiological hazard indices, Raeq, D, D for 137Cs, (AEDE)in, (AEDE)out, Iγ, Hin, and Hout for the unfertilized plant samples were (54.782 ± 7.216, 27.306, 0.469, 0.
... Show MoreThe successful implementation of deep learning nets opens up possibilities for various applications in viticulture, including disease detection, plant health monitoring, and grapevine variety identification. With the progressive advancements in the domain of deep learning, further advancements and refinements in the models and datasets can be expected, potentially leading to even more accurate and efficient classification systems for grapevine leaves and beyond. Overall, this research provides valuable insights into the potential of deep learning for agricultural applications and paves the way for future studies in this domain. This work employs a convolutional neural network (CNN)-based architecture to perform grapevine leaf image classifi
... Show MoreThis research is devoted to study the strengthening technique for the existing reinforced concrete beams using external post-tensioning. An analytical methodology is proposed to predict the value of the effective prestress force for the external tendons required to close cracks in existing beams. The external prestressing force required to close cracks in existing members is only a part from the total strengthening force.
A computer program created by Oukaili (1997) and developed by Alhawwassi (2008) to evaluate curvature and deflection for reinforced concrete beams or internally prestressed concrete beams is modified to evaluate the deflection and the stress of the external tendons for the externally strengthened beams using Matlab
The analysis of the root cause techniques is a reasonable option to be made to assess the root causes of the funding of construction projects. There are a variety of issues related to financing in construction industries in Iraq. The root,cause analysis is the impact of security and social conditions on financial funding. Variety tools of root cause analysis have originated from literature, as common methods for the detection of root causes. The purpose of this study was to identify and diagnose causes that lead to obstruction of financial funding in the construction projects in the republic of Iraq from the contractors' point of view and their interaction with a number of variables. The study diagnosed nine causes of fi
... Show MoreWellbore instability and sand production onset modeling are very affected by Sonic Shear Wave Time (SSW). In any field, SSW is not available for all wells due to the high cost of measuring. Many authors developed empirical correlations using information from selected worldwide fields for SSW prediction. Recently, researchers have used different Artificial Intelligence methods for estimating SSW. Three existing empirical correlations of Carroll, Freund, and Brocher are used to estimate SSW in this paper, while a fourth new empirical correlation is established. For comparing with the empirical correlation results, another study's Artificial Neural Network (ANN) was used. The same data t
... Show MoreDepletion of fossil fuel is one of the main reasons why the bioethanol has become popular. It is a renewable energy source. In order to meet the great demand of bioethanol, it is best that the bioethanol production is from cheap raw materials. Since the golden shower fruit is not being utilized and is considered as waste material, hence, this study was conducted to make use of the large volume of the residue as feedstock to test its potential for bioethanol extraction.The main goal of this study is to obtain the most volume of bioethanol from the golden shower fruit liquid residue by the factors, days of fermentation (3, 5, and 7 days) and sugar concentration (15, 20 and 25 brix) of the liquid residue. Also, part of the study is to compu
... Show More