Preferred Language
Articles
/
zhYEBYcBVTCNdQwCIi1e
A Robust Handwritten Numeral Recognition Using Hybrid Orthogonal Polynomials and Moments
...Show More Authors

Numeral recognition is considered an essential preliminary step for optical character recognition, document understanding, and others. Although several handwritten numeral recognition algorithms have been proposed so far, achieving adequate recognition accuracy and execution time remain challenging to date. In particular, recognition accuracy depends on the features extraction mechanism. As such, a fast and robust numeral recognition method is essential, which meets the desired accuracy by extracting the features efficiently while maintaining fast implementation time. Furthermore, to date most of the existing studies are focused on evaluating their methods based on clean environments, thus limiting understanding of their potential application in more realistic noise environments. Therefore, finding a feasible and accurate handwritten numeral recognition method that is accurate in the more practical noisy environment is crucial. To this end, this paper proposes a new scheme for handwritten numeral recognition using Hybrid orthogonal polynomials. Gradient and smoothed features are extracted using the hybrid orthogonal polynomial. To reduce the complexity of feature extraction, the embedded image kernel technique has been adopted. In addition, support vector machine is used to classify the extracted features for the different numerals. The proposed scheme is evaluated under three different numeral recognition datasets: Roman, Arabic, and Devanagari. We compare the accuracy of the proposed numeral recognition method with the accuracy achieved by the state-of-the-art recognition methods. In addition, we compare the proposed method with the most updated method of a convolutional neural network. The results show that the proposed method achieves almost the highest recognition accuracy in comparison with the existing recognition methods in all the scenarios considered. Importantly, the results demonstrate that the proposed method is robust against the noise distortion and outperforms the convolutional neural network considerably, which signifies the feasibility and the effectiveness of the proposed approach in comparison to the state-of-the-art recognition methods under both clean noise and more realistic noise environments.

Scopus Clarivate Crossref
View Publication
Publication Date
Mon May 01 2023
Journal Name
Indonesian Journal Of Electrical Engineering And Computer Science
Comparison hybrid techniques-based mixed transform using compression and quality metrics
...Show More Authors

Image quality plays a vital role in improving and assessing image compression performance. Image compression represents big image data to a new image with a smaller size suitable for storage and transmission. This paper aims to evaluate the implementation of the hybrid techniques-based tensor product mixed transform. Compression and quality metrics such as compression-ratio (CR), rate-distortion (RD), peak signal-to-noise ratio (PSNR), and Structural Content (SC) are utilized for evaluating the hybrid techniques. Then, a comparison between techniques is achieved according to these metrics to estimate the best technique. The main contribution is to improve the hybrid techniques. The proposed hybrid techniques are consisting of discrete wavel

... Show More
View Publication
Scopus (1)
Scopus Crossref
Publication Date
Tue Feb 28 2023
Journal Name
Periodicals Of Engineering And Natural Sciences (pen)
Bitcoin Prediction with a hybrid model
...Show More Authors

. In recent years, Bitcoin has become the most widely used blockchain platform in business and finance. The goal of this work is to find a viable prediction model that incorporates and perhaps improves on a combination of available models. Among the techniques utilized in this paper are exponential smoothing, ARIMA, artificial neural networks (ANNs) models, and prediction combination models. The study's most obvious discovery is that artificial intelligence models improve the results of compound prediction models. The second key discovery was that a strong combination forecasting model that responds to the multiple fluctuations that occur in the bitcoin time series and Error improvement should be used. Based on the results, the prediction a

... Show More
View Publication
Scopus (8)
Scopus Crossref
Publication Date
Wed Feb 01 2023
Journal Name
Periodicals Of Engineering And Natural Sciences (pen)
Bitcoin Prediction with a hybrid model
...Show More Authors

In recent years, Bitcoin has become the most widely used blockchain platform in business and finance. The goal of this work is to find a viable prediction model that incorporates and perhaps improves on a combination of available models. Among the techniques utilized in this paper are exponential smoothing, ARIMA, artificial neural networks (ANNs) models, and prediction combination models. The study's most obvious discovery is that artificial intelligence models improve the results of compound prediction models. The second key discovery was that a strong combination forecasting model that responds to the multiple fluctuations that occur in the bitcoin time series and Error improvement should be used. Based on the results, the prediction acc

... Show More
Scopus (10)
Scopus
Publication Date
Thu Feb 28 2019
Journal Name
Multimedia Tools And Applications
Shot boundary detection based on orthogonal polynomial
...Show More Authors

View Publication
Scopus (41)
Crossref (35)
Scopus Clarivate Crossref
Publication Date
Wed Jan 01 2020
Journal Name
Technology Reports Of Kansai University
Modified Robust AES Architecture
...Show More Authors

Data security is a fundamental parameter on communication system development. The capability of protecting and securing the information is a great essence for the growth of the data security and electronic commerce. The cryptography has a significant influence upon information security systems against the variety of the attacks, in which higher complexity in secret keys results in the increase of security and the cryptography algorithms’ complexity. The sufficient and newer cryptographic methods’ versions may helpful in the reduction of the security attacks. The main aim of this research is satisfying the purpose of the information security through the addition of a new security level to the Advanced Encryption Standard (AES) algorithm

... Show More
Publication Date
Mon Oct 01 2018
Journal Name
Journal Of Economics And Administrative Sciences
Nurse Scheduling Problem Using Hybrid Simulated Annealing Algorithm
...Show More Authors

Nurse scheduling problem is one of combinatorial optimization problems and it is one of NP-Hard problems which is difficult to be solved as optimal solution. In this paper, we had created an proposed algorithm which it is hybrid simulated annealing algorithm to solve nurse scheduling problem, developed the simulated annealing algorithm and Genetic algorithm. We can note that the proposed algorithm (Hybrid simulated Annealing Algorithm(GS-h)) is the best method among other methods which it is used in this paper because it satisfied minimum average of the total cost and maximum number of Solved , Best and Optimal problems. So we can note that the ratios of the optimal solution are 77% for the proposed algorithm(GS-h), 28.75% for Si

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Jan 01 2013
Journal Name
International Journal Of Computer Applications
Content-based Image Retrieval (CBIR) using Hybrid Technique
...Show More Authors

Image retrieval is used in searching for images from images database. In this paper, content – based image retrieval (CBIR) using four feature extraction techniques has been achieved. The four techniques are colored histogram features technique, properties features technique, gray level co- occurrence matrix (GLCM) statistical features technique and hybrid technique. The features are extracted from the data base images and query (test) images in order to find the similarity measure. The similarity-based matching is very important in CBIR, so, three types of similarity measure are used, normalized Mahalanobis distance, Euclidean distance and Manhattan distance. A comparison between them has been implemented. From the results, it is conclud

... Show More
View Publication
Publication Date
Fri Dec 29 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Speaker Verification Using Hybrid Scheme for Arabic Speech
...Show More Authors

In this work , a hybrid scheme tor Arabic speech for the recognition

of  the speaker  verification  is presented  . The scheme is hybrid as utilizes the traditional digi tal signal processi ng and neural network . Kohonen neural  network has been used as a recognizer  tor speaker verification after extract spectral  features from an acoustic signal  by Fast Fourier Transformation Algorithm(FFT) .

The system was im plemented using a PENTIUM  processor , I000

MHZ compatible and MS-dos 6.2 .

 

View Publication Preview PDF
Publication Date
Wed Mar 30 2022
Journal Name
Journal Of Economics And Administrative Sciences
Euro Dinar Trading Analysis Using WARIMA Hybrid Model
...Show More Authors

The rise in the general level of prices in Iraq makes the local commodity less able to compete with other commodities, which leads to an increase in the amount of imports and a decrease in the amount of exports, since it raises demand for foreign currencies while decreasing demand for the local currency, which leads to a decrease in the exchange rate of the local currency in exchange for an increase in the exchange rate of currencies. This is one of the most important factors affecting the determination of the exchange rate and its fluctuations. This research deals with the currency of the European Euro and its impact against the Iraqi dinar. To make an accurate prediction for any process, modern methods can be used through which

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Sep 01 2020
Journal Name
Baghdad Science Journal
Developing Arabic License Plate Recognition System Using Artificial Neural Network and Canny Edge Detection
...Show More Authors

In recent years, there has been expanding development in the vehicular part and the number of vehicles moving on the roads in all the sections of the country. Arabic vehicle number plate identification based on image processing is a dynamic area of this work; this technique is used for security purposes such as tracking of stolen cars and access control to restricted areas. The License Plate Recognition System (LPRS) exploits a digital camera to capture vehicle plate numbers is used as input to the proposed recognition system. Basically, the proposed system consists of three phases, vehicle license plate localization, character segmentation, and character recognition, the License Plate (LP) detection is presented using canny edge detection

... Show More