Landsat-5 Thematic Mapper (TM) has been imaging the Earth since March 1984 and Landsat-7 Enhanced Thematic Mapper Plus (ETM+) was added to the series of Landsat instruments in April 1999. In this paper the two sensors are used to monitoring the agriculture condition and detection the changing in the area of plant covers, the stability and calibration of the ETM+ has been monitored extensively since launch although it is not monitored for many years, TM now has a similar system in place to monitor stability and calibration. By referring to statistical values for the classification process, the results indicated that the state of vegetation in 1990 was in the proportion of 42.8%, while this percentage rose to 52.5% for the same study area in 2002.
The pilgrimage takes place in several countries around the world. The pilgrimage includes the simultaneous movement of a huge crowd of pilgrims which leads to many challenges for the pilgrimage authorities to track, monitor, and manage the crowd to minimize the chance of overcrowding’s accidents. Therefore, there is a need for an efficient monitoring and tracking system for pilgrims. This paper proposes powerful pilgrims tracking and monitoring system based on three Internet of Things (IoT) technologies; namely: Radio Frequency Identification (RFID), ZigBee, and Internet Protocol version 6 (IPv6). In addition, it requires low-cost, low-power-consumption implementation. The proposed
Dust is a frequent contributor to health risks and changes in the climate, one of the most dangerous issues facing people today. Desertification, drought, agricultural practices, and sand and dust storms from neighboring regions bring on this issue. Deep learning (DL) long short-term memory (LSTM) based regression was a proposed solution to increase the forecasting accuracy of dust and monitoring. The proposed system has two parts to detect and monitor the dust; at the first step, the LSTM and dense layers are used to build a system using to detect the dust, while at the second step, the proposed Wireless Sensor Networks (WSN) and Internet of Things (IoT) model is used as a forecasting and monitoring model. The experiment DL system
... Show MoreGeneral Background: Deep image matting is a fundamental task in computer vision, enabling precise foreground extraction from complex backgrounds, with applications in augmented reality, computer graphics, and video processing. Specific Background: Despite advancements in deep learning-based methods, preserving fine details such as hair and transparency remains a challenge. Knowledge Gap: Existing approaches struggle with accuracy and efficiency, necessitating novel techniques to enhance matting precision. Aims: This study integrates deep learning with fusion techniques to improve alpha matte estimation, proposing a lightweight U-Net model incorporating color-space fusion and preprocessing. Results: Experiments using the AdobeComposition-1k
... Show MoreThe long-term monitoring of land movements represents the most successful application of the Global Navigation Satellite System (GNSS), particularly the Global Positioning System. However, the application of long term monitoring of land movements depends on the availability of homogenous and consistent daily position time series of stations over a period of time. Such time series can be produced very efficiently by using Precise Point Positioning and Double Difference techniques based on particular sophisticated GNSS processing softwares. Nonetheless, these rely on the availability of GNSS products which are precise satellite orbit and clock, and Earth orientation parameters. Unfortunately, several changes and modifications have been mad
... Show MoreBackground: The study aimed to investigate the effect of different techniques of en masse retraction on the vertical and sagittal position, axial inclination, rate of space closure, and type of movement of maxillary central incisor. Materials and methods: A typodont simulation system was used (CL II division 2 malocclusion). Three groups were used group 1(N=10, T-loop), group 2(N=10, Time-Saving loop), and group 3(N=10, Microimplant). Photographs were taken before and after retraction and measurements were made using Autodesk AutoCAD© software 2010. Kruskal-Wallis one-way analyses of variance and Mann-Whitney U test (p?0.05) were used. Results: The rate of space closure showed no significant difference among the three groups (p?0.05), whi
... Show MoreThe prepared nanostructure SiO2 thin films were densified by two techniques (conventional and Diode Pumped Solid State Laser (DPSS) (532 nm). X-ray diffraction (XRD), Field Emission Scanning electron microscopy (FESEM), and Atomic Force Microscope (AFM) technique were used to analyze the samples. XRD results showed that the structure of SiO2 thin films was amorphous for both Oven and Laser densification. FESEM and AFM images revealed that the shape of nano silica is spherical and the particle size is in nano range. The small particle size of SiO2 thin film densified by DPSS Laser was (26 nm) , while the smallest particle size of SiO2 thin film densified by Oven was (111 nm).
Early detection of eye diseases can forestall visual deficiency and vision loss. There are several types of human eye diseases, for example, diabetic retinopathy, glaucoma, arteriosclerosis, and hypertension. Diabetic retinopathy (DR) which is brought about by diabetes causes the retinal vessels harmed and blood leakage in the retina. Retinal blood vessels have a huge job in the detection and treatment of different retinal diseases. Thus, retinal vasculature extraction is significant to help experts for the finding and treatment of systematic diseases. Accordingly, early detection and consequent treatment are fundamental for influenced patients to protect their vision. The aim of this paper is to detect blood vessels from
... Show MoreKE Sharquie, AA Noaimi, MR Al-Karhi, Journal of Cosmetics, Dermatological Sciences and Applications, 2014 - Cited by 2