Pharmaceuticals have been widely remaining contaminants in wastewater, and diclofenac is the most common pharmaceutical pollutant. Therefore, the removal of diclofenac from aqueous solutions using activated carbon produced by pyrocarbonic acid and microwaves was investigated in this research. Apricot seed powder and pyrophosphoric acid (45 wt%) were selected as raw material and activator respectively, and microwave irradiation technique was used to prepare the activated carbon. The raw material was impregnated in pyrophosphoric acid at 80◦C with an impregnation ratio of 1: 3 (apricot seeds to phosphoric acid), the impregnation time was 4 h, whereas the power of the microwave was 700 watts with a radiation time of 20 min. A series of experiments were conducted at constant mixing speed (300 revolutions per minute) to evaluate the effect of experimental factors likes, adsorption time, pH of diclofenac solution, diclofenac initial concentration, and dosage of activated carbon on removal efficiency. The design of experiments (version 13 Stat-Ease) was implemented using the central composite method to define the optimum effect of the process factors on the removal efficiency. The analysis of variance showed that the quadratic model for the experiment was significant with a very low probability value (P- value < 0.0001). The adjusted R2 of the model was 0.9826 and the predicted R2 was 0.9574. Whereas the optimum conditions suggested by the model for the process variable were found to be 150 min, 3.25 pH, 30 mg/L, 0.267g, for adsorption time, pH of diclofenac solution, diclofenac initial concentration, a dosage of activated carbon, respectively and the maximum removal efficiency was found to be 94.6%. The data obtained from the experiments were fitted with Langmuir and Freundlich models and the results show that the data was well fitted Langmuir model with R2 = 0.9685 as compared to the Freundlich model which has R2 = 0.93249. Likewise, the data was analyzed by pseudo first and second-order kinetic models and the results show that the adsorption on apricot-activated carbon was well adequate with the pseudo-second-order model.
Random throwing of industrial waste has a significant impact on the environment unless it takes into account the conditions of engineered destroying and/or re-used. Taking the advantage of re-using waste materials in engineering projects represents a well-planned project in order to resolve a lot of engineering problems for some difficult soils. The objective of this study was to evaluate the capability and effects of Rubber Shreds (RS) from scrap torn belts towards improving the shear strength of soft clay. A direct shear tests were conducted on soft clay-RS mixture. The following parameters were investigated to study the influence of RS content, water content, normal stress, and dilation ratio. From experimental test results it was fou
... Show MoreThe corrosion behavior of carbon steel at different temperatures 100,120,140 and 160 Cͦ under different pressures 7,10 and 13 bar in pure distilled water and after adding three types of oxygen scavengers Hydroquinone, Ascorbic acid and Monoethanolamine in different concentrations 40,60 and 80 ppm has been investigated using weight loss method. The carbon steel specimens were immersed in water containing 8.2 ppm dissolved oxygen (DO) by using autoclave. It was found that corrosion behavior of carbon steel was greatly influenced by temperature with high pressure. The corrosion rate decreases, when adding any one of oxygen scavengers. The best results were obtained at a concentration of 80 ppm of each scavenger. It was observed that
... Show MoreTerrestrial isopods play an important role in the biodegradation of many wastes which gives agreat importance in the nutrient cycles and ecosystem services , therefore this paper aims to use species
Abstract :- In this paper, silver nanoparticles had been prepared by chemical reduction method. Many tests had been done to it such as UV-Visible spectrophotometer, XRD, AFM&SEM test. finally an attempt had been done to get the optimum condition to control the grain size of silver Nanoparticles by variation the heating period and other parameters which has an effect in silver Nanoparticles synthesis process. in this method we can get a silver nanoparticles in the size range from 52 to 97 nm.
At present, numerous novel chemical compounds face challenges related to their limited solubility in aqueous environments. These compounds are classified under the Biopharmaceutical Classification System (BCS) as either class II or class IV substances. Different carriers were used to increase their solubility. Candesartan cilexetil (CC) is one of the most widely used antihypertensive drugs, which belongs to class II drugs. The aim of this research was to enhance the solubility and dissolution rate of CC through a complexation approach involving β-cyclodextrin and its derivatives, specifically hydroxypropyl beta cyclodextrin (HP-β-CD), methyl beta cyclodextrin (M-β-CD), and sulfonyl ether beta-cyclodextrin (SBE-β-CD), serving as
... Show MoreWe introduce a new class of harmonici multivalent functions define by generalized Rucheweyh derivative operator. We also obtain several interesting propertiesi such as sharp coefficienit estimates, distortioni bound, extreme points, Hadamardi product and other several results. Derivative; extreme points.
Background: Implantology is a fast growing area in dentistry. One of the most common issues encountered in dental implantation procedures is the lack of adequate preoperative planning. Conventional radiography may not be able to assess the true regional three-dimensional anatomical presentation. Multi Slice Computed Tomography provides data in 3-dimentional format offering information on craniofacial anatomy for diagnosis; this technology enables the virtual placement of implant in a 3-Dimensional model of the patient jaw (dental planning). Patients, Material and Methods: The sample consisted of (72) Iraqi patients indicated for dental implant (34 male and 38 female), age range between (20-70) years old. They were examined during a time p
... Show MoreABSTRACT: In this research SnO2 thin films have been prepared by using hot plate atmospheric pressure chemical vapor deposition (HPCVD) on glass and Si (n-type) substrates at various temperatures. Optical properties have been measured by UV-VIS spectrophotometer, maximum transmittance about (94%) at 400 0C. Structure properties have been studied by using X-ray diffraction (XRD) , its shows that all films have a crystalline structure in nature and by increasing growth temperature from(350-500) 0C diffraction peaks becomes sharper and grain size has been change. Atomic force microscopy (AFM) uses to analyze the morphology of the Tine Oxides surface structure. Roughness & Root mean square for different temperature have been investigated. The r
... Show More