The aim of this study to evaluate the effects of die holes diameter and speed of die on the performance of machine and feed pellet quality. Machine productivity (Kg.h-1), consumed power (kW), pellet durability (%) and pellet bulk density (g.cm-3) was studied. The study factors consisted of three diameter of die holes (3, 4, and 5 mm), and three speeds die (280, 300, and 320 rpm). Results showed with increasing of die holes diameter from 3 to 4 and to 5 mm give a significant increase in machine productivity, while consumed power, pellet durability and pellet bulk density a significant decreased. By increasing the die speed, from 280 to 300 then to 320 rpm, the machine productivity increased significantly, while consumed power, pellet durability, and pellet bulk density decreased significantly. The highest machine productivity 86.90 Kg.h-1, less consumed power 2.34 Kw recorded with die holes diameter of 5 mm and speeds of 320 rpm, while die holes diameter 3 mm and speed of die 280 rpm recorded the highest pellet durability 91.96% and pellet bulk density 0.6383 g.cm-3. It was concluded that the die holes diameter and die speed have a significant effect in the performance of machine and the pellet produced.
CNC machine is used to machine complex or simple shapes at higher speed with maximum accuracy and minimum error. In this paper a previously designed CNC control system is used to machine ellipses and polylines. The sample needs to be machined is drawn by using one of the drawing software like AUTOCAD® or 3D MAX and is saved in a well-known file format (DXF) then that file is fed to the CNC machine controller by the CNC operator then that part will be machined by the CNC machine. The CNC controller using developed algorithms that reads the DXF file feeds to the machine, extracts the shapes from the file and generates commands to move the CNC machine axes so that these shapes can be machined.
Cryptocurrency became an important participant on the financial market as it attracts large investments and interests. With this vibrant setting, the proposed cryptocurrency price prediction tool stands as a pivotal element providing direction to both enthusiasts and investors in a market that presents itself grounded on numerous complexities of digital currency. Employing feature selection enchantment and dynamic trio of ARIMA, LSTM, Linear Regression techniques the tool creates a mosaic for users to analyze data using artificial intelligence towards forecasts in real-time crypto universe. While users navigate the algorithmic labyrinth, they are offered a vast and glittering selection of high-quality cryptocurrencies to select. The
... Show MoreThis paper proposes a better solution for EEG-based brain language signals classification, it is using machine learning and optimization algorithms. This project aims to replace the brain signal classification for language processing tasks by achieving the higher accuracy and speed process. Features extraction is performed using a modified Discrete Wavelet Transform (DWT) in this study which increases the capability of capturing signal characteristics appropriately by decomposing EEG signals into significant frequency components. A Gray Wolf Optimization (GWO) algorithm method is applied to improve the results and select the optimal features which achieves more accurate results by selecting impactful features with maximum relevance
... Show MoreThis research examines the impact of cornering on the aerodynamic forces and stability of a Nissan Versa (Almera) passenger sedan car by introducing novel modifications. These modifications included single inverted wings with end plates as a front spoiler, double‐element inverted wings with end plates as a rear spoiler, and incorporating the ground as a diffuser under the car trunk. The goal is to enhance the performance and stability of conventional passenger cars. To ensure the accuracy of the numerical data, the study utilized multiple methodologies to model the turbulence model, ultimately selecting the most suitable option. This involved comparing numerical data with wind tunnel experimental d
According to the importance of the conveyor systems in various industrial and service lines, it is very desirable to make these systems as efficient as possible in their work. In this paper, the speed of a conveyor belt (which is in our study a part of an integrated training robotic system) is controlled using one of the artificial intelligence methods, which is the Artificial Neural Network (ANN). A visions sensor will be responsible for gathering information about the status of the conveyor belt and parts over it, where, according to this information, an intelligent decision about the belt speed will be taken by the ANN controller. ANN will control the alteration in speed in a way that gives the optimized energy efficiency through
... Show MoreBackground: Vibration decreases the viscosity of composite, making it flow and readily fit the walls of the cavity. This study is initiated to see how this improved adaptation of the composite resin to the cavity walls will affect microleakage using different curing modes
Materials and methods: Standard Class V cavities were prepared on the buccal surface of sixty extracted premolars. Teeth were randomly assigned into two groups (n=30) according to the composite condensation (vibration and conventional) technique, then subdivided into three subgroups (n=10) according to light curing modes (LED-Ramp, LED-Fast and Halogen Continuous modes). Cavities were etched and bonded with Single Bond Universal
... Show MoreIn this work, magnesium aluminate spinel (MA) (MgO 28 wt%, Al2O3 72 wt%) stoichiometric compound , were synthesized via solid state reaction (SSR) Single firing stage, and the impact of sintering on the physical properties and thermal properties as well as the fine structure and morphology of the ceramic product were examined. The Spinel samples were pressed at of (14 MPa) and sintering soaking time (2h). The effect of adding oxide titania (TiO2) was studied. The obtained powders were calcined at a temperature range of 1200 and 1400 °C. The calcined samples spinel were characterized by XRD, it showed the presence of developed spinel phase end also showed that the best catalyst is titania. The SEM image showed the high sintering temperat
... Show MoreAn isolate of Leishmania major was grown on the semisolid medium and incubated at 26ºC. The isolate was irradiated by He: Ne laser (632.8 nm, 10 mW) at exposure times (5, 10, 15, 20, 25, 30) minutes in their respective order. The unirradiated groups represent control group. Growth rate and percentage of viability were examined during six days after irradiation. The change in these two parameters reflects the effect of irradiation on the parasite. The results refers that the general growth effected by irradiation in comparison with un irradiation group, The growth rate of parasite decrease with increasing the exposure time in comparison with control group. Parasite viability decrease with irradiation and the percentage of living cell dec
... Show MoreThis study has been conducted to examin the effect of sodium propionate at different level of 0.03,0.06,0.10% on the number of bacteria and mold and to extend the storage life of laboratory processed biscuit. The results indicated that the use of 0.10% sodium propionate prolonged the storage peroid until the third month, while the use of 0.20% sodium propionate showed no growth of bacteria up to six month of storage, three types of bacteria has been isolated from processed biscuit, namely, Staphylococcus aureus, Bacillus cereus, Esherichia coli. using 0.10% sodium propionate showed no growth of mold up to three month of storage ,while using of 0.15 % and 0.20% sodium propionate prevent the growth
... Show More