Objectives: This study aims to broaden our knowledge of the role of eDNA in bacterial biofilms and antibiotic-resistance gene transfer among isolates. Methods: Staphylococcus aureus, E. coli, and Pseudomonas aeruginosa were isolated from different non-repeated 170 specimens. The bacterial isolates were identified using morphological and molecular methods. Different concentrations of genomic DNA were tested for their potential role in biofilms formed by study isolates employing microtiter plate assay. Ciprofloxacin resistance was identified by detecting a mutation in gyrA and parC. Results: The biofilm intensity significantly decreased (P < 0.05) concerning S. aureus isolates and insignificantly (P > 0.05) concerning E. coli isolates. Yet, one E. coli isolate's biofilm was significantly decreased (P < 0.05) linearly with increasing eDNA. Of considerable interest, the addition of eDNA led to a significant increase (P < 0.05) in the biofilm of the two-tested P. aeruginosa isolates. Moreover, eDNA participated in transferring Ciprofloxacin resistance to the sensitive isolate when it presents in its biofilm. Conclusion: eDNA has a dual effect on bacterial biofilms either supportive or suppressive following bacterial species per se. Also, it seems to play an important role in antibiotic resistance within the biofilm.
In this article four samples of HgBa2Ca2Cu2.4Ag0.6O8+δ were prepared and irradiated with different doses of gamma radiation 6, 8 and 10 Mrad. The effects of gamma irradiation on structure of HgBa2Ca2Cu2.4Ag0.6O8+δ samples were characterized using X-ray diffraction. It was concluded that there effect on structure by gamma irradiation. Scherrer, crystallization, and Williamson equations were applied based on the X-ray diffraction diagram and for all gamma doses, to calculate crystal size, strain, and degree of crystallinity. I
... Show More