Preferred Language
Articles
/
zReY0Y0BVTCNdQwCOB2Q
Iraqi EFL Students’ Attitudes towards Online Learning
...Show More Authors

Online learning is not a new concept in education, but it has been used extensively since the Covid-19 pandemic and is still in use now. Every student in the world has gone through this learning process from the primary to the college levels, with both teachers and students conducting instruction online (at home). The goal of the current study is to investigate college students’ attitudes towards online learning. To accomplish the goal of the current study, a questionnaire is developed and adjusted before being administered to a sample of 155 students. Additionally, validity and reliability are attained. Some conclusions, recommendations, and suggestions are offered in the end.

Publication Date
Wed Mar 30 2022
Journal Name
Journal Of Educational And Psychological Researches
The degree of using electronic educational alternatives in education from the teachers 'and female teachers' point of view Intermediate stage in southern border schools and its relationship to some variables
...Show More Authors

The aim of the current research is to know the degree to which middle school teachers and female teachers in the southern border schools use electronic educational alternatives in the field of education from their point of view and its relationship to some variables, and to achieve this goal, a random sample of (200) teachers was selected in southern border schools, and a questionnaire was prepared to collect The data, as well as the descriptive approach was used to achieve this goal. T-test and analysis of variance were used for the statistical treatment. The results concluded that the educational courses provided to male and female teachers are not sufficient. It has also been concluded that the use of electronic educational alternativ

... Show More
View Publication Preview PDF
Publication Date
Mon Feb 14 2022
Journal Name
Journal Of Educational And Psychological Researches
The impact of implementing the integrated education strategy on the academic achievement of the Arabic language curriculum for the seventh grade in the schools of Amman
...Show More Authors

The study aims to identify the impact of the implementation of the integrated education strategy in the curriculum of the Arabic language for the seventh grade on the academic achievement in the schools of the capital Amman. The researcher adopted the experimental method, where two divisions of the seventh grade students were chosen from the secondary school for girls. The sample of the study was 60 students divided into two equal groups: 30 students represented the experimental group (A) and (30) students represented the control group. To collect the needed data, a test of (40) Multiple Choices was used. The results showed statistically significant differences between the mean scores of the experimental group who were taught acc

... Show More
View Publication Preview PDF
Publication Date
Fri Feb 21 2025
Journal Name
Applied System Innovation
Utilizing Soft Computing Techniques to Estimate the Axial Permanent Deformation of Asphalt Concrete
...Show More Authors

Rutting is a crucial concern impacting asphalt concrete pavements’ stability and long-term performance, negatively affecting vehicle drivers’ comfort and safety. This research aims to evaluate the permanent deformation of pavement under different traffic and environmental conditions using an Artificial Neural Network (ANN) prediction model. The model was built based on the outcomes of an experimental uniaxial repeated loading test of 306 cylindrical specimens. Twelve independent variables representing the materials’ properties, mix design parameters, loading settings, and environmental conditions were implemented in the model, resulting in a total of 3214 data points. The network accomplished high prediction accuracy with an R

... Show More
View Publication
Scopus Clarivate Crossref
Publication Date
Sat Oct 01 2022
Journal Name
Baghdad Science Journal
COVID-19 Diagnosis System using SimpNet Deep Model
...Show More Authors

After the outbreak of COVID-19, immediately it converted from epidemic to pandemic. Radiologic images of CT and X-ray have been widely used to detect COVID-19 disease through observing infrahilar opacity in the lungs. Deep learning has gained popularity in diagnosing many health diseases including COVID-19 and its rapid spreading necessitates the adoption of deep learning in identifying COVID-19 cases. In this study, a deep learning model, based on some principles has been proposed for automatic detection of COVID-19 from X-ray images. The SimpNet architecture has been adopted in our study and trained with X-ray images. The model was evaluated on both binary (COVID-19 and No-findings) classification and multi-class (COVID-19, No-findings

... Show More
View Publication Preview PDF
Scopus (8)
Scopus Clarivate Crossref
Publication Date
Wed Jan 01 2020
Journal Name
Karbala Journal Of Physical Education Sciences
The effect of using a designed device to develop the technical performance of the descending landing skill facing with half a cycle on the parallel device of the technical men's
...Show More Authors

The research included five sections containing the first section on the introduction of the research and its importance and was addressed to the importance of the game of gymnastic and skilled parallel effectiveness and the importance of learning, but the problem of research that there is a difference in learning this skill and difficulty in learning may be one of the most important reasons are fear and fear of falling and injury, And a lack of sense of the movement of the movement is one of the obstacles in the completion of the skill and the goal of research to design a device that helps in learning the skill of descending Almtor facing with half a cycle according to the typical locomotor track on the parallel device of the technical men'

... Show More
Preview PDF
Publication Date
Wed Nov 29 2023
Journal Name
International Journal Of Advances In Scientific Research And Engineering (ijasre), Issn:2454-8006, Doi: 10.31695/ijasre
Yolo Versions Architecture: Review
...Show More Authors

Deep learning techniques are applied in many different industries for a variety of purposes. Deep learning-based item detection from aerial or terrestrial photographs has become a significant research area in recent years. The goal of object detection in computer vision is to anticipate the presence of one or more objects, along with their classes and bounding boxes. The YOLO (You Only Look Once) modern object detector can detect things in real-time with accuracy and speed.  A neural network from the YOLO family of computer vision models makes one-time predictions about the locations of bounding rectangles and classification probabilities for an image. In layman's terms, it is a technique for instantly identifying and recognizing

... Show More
View Publication
Publication Date
Tue Aug 31 2021
Journal Name
Inmateh Agricultural Engineering
DETERMINING THE EFFICIENCY OF A SMART SPRAYING ROBOT FOR CROP PROTECTION USING IMAGE PROCESSING TECHNOLOGY
...Show More Authors

A system was used to detect injuries in plant leaves by combining machine learning and the principles of image processing. A small agricultural robot was implemented for fine spraying by identifying infected leaves using image processing technology with four different forward speeds (35, 46, 63 and 80 cm/s). The results revealed that increasing the speed of the agricultural robot led to a decrease in the mount of supplements spraying and a detection percentage of infected plants. They also revealed a decrease in the percentage of supplements spraying by 46.89, 52.94, 63.07 and 76% with different forward speeds compared to the traditional method.

View Publication Preview PDF
Scopus (6)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Tue Jun 23 2020
Journal Name
Baghdad Science Journal
Anomaly Detection Approach Based on Deep Neural Network and Dropout
...Show More Authors

   Regarding to the computer system security, the intrusion detection systems are fundamental components for discriminating attacks at the early stage. They monitor and analyze network traffics, looking for abnormal behaviors or attack signatures to detect intrusions in early time. However, many challenges arise while developing flexible and efficient network intrusion detection system (NIDS) for unforeseen attacks with high detection rate. In this paper, deep neural network (DNN) approach was proposed for anomaly detection NIDS. Dropout is the regularized technique used with DNN model to reduce the overfitting. The experimental results applied on NSL_KDD dataset. SoftMax output layer has been used with cross entropy loss funct

... Show More
View Publication Preview PDF
Scopus (27)
Crossref (12)
Scopus Clarivate Crossref
Publication Date
Sun Jan 01 2023
Journal Name
International Journal Of Advances In Scientific Research And Engineering
Yolo Versions Architecture: Review
...Show More Authors

Deep learning techniques are used across a wide range of fields for several applications. In recent years, deep learning-based object detection from aerial or terrestrial photos has gained popularity as a study topic. The goal of object detection in computer vision is to anticipate the presence of one or more objects, along with their classes and bounding boxes. The YOLO (You Only Look Once) modern object detector can detect things in real-time with accuracy and speed. A neural network from the YOLO family of computer vision models makes one-time predictions about the locations of bounding rectangles andclassification probabilities for an image. In layman's terms, it is a technique for instantly identifying and rec

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Mon Oct 02 2023
Journal Name
Journal Of Engineering
Skull Stripping Based on the Segmentation Models
...Show More Authors

Skull image separation is one of the initial procedures used to detect brain abnormalities. In an MRI image of the brain, this process involves distinguishing the tissue that makes up the brain from the tissue that does not make up the brain. Even for experienced radiologists, separating the brain from the skull is a difficult task, and the accuracy of the results can vary quite a little from one individual to the next. Therefore, skull stripping in brain magnetic resonance volume has become increasingly popular due to the requirement for a dependable, accurate, and thorough method for processing brain datasets. Furthermore, skull stripping must be performed accurately for neuroimaging diagnostic systems since neither no

... Show More
View Publication Preview PDF
Crossref