Preferred Language
Articles
/
zRdu5I8BVTCNdQwCuH9X
Photodynamic Action of low power He-Ne laser on photosensitized human Hep-2 and AMN3 cell lines with Hematoporphyrin derivative in vitro

Photodynamic Action (PDA) by using appropriate wavelength of irradiation conjugated with porphyrin derivatives is a powerful mechanism of tumor destruction. Hematoporphyrin derivative has been shown to selectively localize in neoplastic cells and then cause destruction of them by generation of singlet oxygen when activated by low power He-Ne laser. Light which used in this study has been emitting from this laser has a wavelength equal to 632.8 nm (red light). Doses of laser had been varied from 3.6 J/cm2 to 14.4 J/cm2 . The beam of laser adjusted with a modified tissue culture plate. Cell lines had exposed to Hematoporphyrin D (HpD) for 24 hours before Laser exposure, their concentrations were varied from 5 µg/ml to 80 µg/ml. Results clearly proved a Photodynamic Action of laser conjugated with photosensitizer. No significant difference in cell viability was detected using neither the laser doses alone nor the photosensitizer (HpD) alone. Therefore, we believe that the low power He-Ne laser conjugated with hematoporphyrin derivatives’ as a photosensitizer will open the door wide for photodynamic therapy of tumors.

Crossref
View Publication
Publication Date
Sat Jan 01 2022
Journal Name
Open Engineering
Producing low-cost self-consolidation concrete using sustainable material
Abstract<p>The disposal of the waste material is the main goal of this investigation by transformation to high-fineness powder and producing self-consolidation concrete (SCC) with less cost and more eco-friendly by reducing the cement weight, taking into consideration the fresh and strength properties. The reference mix design was prepared by adopting the European guide. Five waste materials (clay brick, ceramic, granite tiles, marble tiles, and thermostone blocks) were converted to high-fine particle size distribution and then used as 5, 10, and 15% weight replacements of cement. The improvement in strength properties is more significant when using clay bricks compared to other activated waste </p> ... Show More
View Publication
Crossref (7)
Crossref
Publication Date
Tue Sep 01 2009
Journal Name
Al-khwarizmi Engineering Journal
Low Cost Heart Rate Monitor Using Led-Led Sensor

A high sensitivity, low power and low cost sensor has been developed for photoplethysmography (PPG) measurement. The PPG principle was applied to follow the dilatation and contraction of skin blood vessels during the cardiac cycle. A standard light emitting diodes (LEDs) has been used as a light emitter and detector, and in order to reduce the space, cost and power, the classical analogue-to-digital converters (ADCs) replaced by the pulse-based signal conversion techniques. A general purpose microcontroller has been used for the implementation of measurement protocol. The proposed approach leads to better spectral sensitivity, increased resolution, reduction in cost, dimensions and power consumption. The basic sensing configuration prese

... Show More
View Publication Preview PDF
Publication Date
Sat Jan 01 2022
Journal Name
Open Engineering
Producing low-cost self-consolidation concrete using sustainable material
Abstract<p>The disposal of the waste material is the main goal of this investigation by transformation to high-fineness powder and producing self-consolidation concrete (SCC) with less cost and more eco-friendly by reducing the cement weight, taking into consideration the fresh and strength properties. The reference mix design was prepared by adopting the European guide. Five waste materials (clay brick, ceramic, granite tiles, marble tiles, and thermostone blocks) were converted to high-fine particle size distribution and then used as 5, 10, and 15% weight replacements of cement. The improvement in strength properties is more significant when using clay bricks compared to other activated waste </p> ... Show More
View Publication
Scopus (11)
Crossref (7)
Scopus Clarivate Crossref
Publication Date
Sun Jul 30 2023
Journal Name
Iraqi Journal Of Science
Impact of SARS-COV-2 Variants on the Infection Severity among Iraqi Patients

     Severe acute respiratory corona viruses (SARS-COVs) are a particular category of RNA viruses that have emerged as a potential danger to the human population, triggering epidemics and pandemics that have resulted in catastrophic human mortality. The SARS-CoV2, responsible for the COVID-19 pandemic that began on December 12, 2019 in Wuhan, China, has been linked to bats. A new SARS-CoV-2 variant appeared in late December 2020. Mutations with variants continued to appear until the time of this study. Thus, this study aimed to provide a local database among Iraqi patients about SARS-COV-2 variants as there have been very few local studies documenting its existence and its relationship with the progression and severity of infection.

... Show More
View Publication Preview PDF
Scopus (7)
Crossref (1)
Scopus Crossref
Publication Date
Wed May 01 2019
Journal Name
Iraqi Journal Of Science
Thermodynamics and Kinetics of Hydrogen Transfer Mechanism in1-[(E)-1, 3-Benzothiazol-2-Ylazo]Naphthalen-2-Ol Tautomers in Aqueous Medium/ Density Functional Theory

     Enol-Keto tautomerism in 1-[(E)-1,3-benzothiazol-2-ylazo]naphthalen-2-ol has been studied using the B3LYP functional of density functional theory (DFT) with 6-31G(d,p) basis set. Relative and absolute energies, transition state geometries (TS), dipole moments, entropies, enthalpies and Gibbs free energies, equilibrium constants (KT) and rate of tautomerization (kr) were calculated. Also, the computations of geometries and vibration frequencies for the tautomers were calculated and compared. The results of the calculations showed that the enol form is the most stable form than other isomers, this might be due to intra-hydrogen bonding. The TS1 activation energies for tautomer A ↔ B, ta

... Show More
View Publication Preview PDF
Publication Date
Wed Jun 01 2016
Journal Name
Journal Of Multidisciplinary Engineering Science And Technology (jmest)
Fabrication And Characterization Of P-Cuo/N-Si Heterojunction For Solar Cell Applications

This studies p- CuO / n - Si hete-rojunction was deposited by high vacuum thermal evaporation of Copper subjected to thermal oxidation at 300 oC on silicon. Surface morphology properties of The optical properties concerning the transmission spectra were studies for prepared thin films. this structure have been studied. XRD anaylsis discover that the peak at (𝟏𝟏𝟏-) and (111) plane are take over for the crystal quality of the CuO films. The band gap of CuO films is found to be 1.54 eV. The average grain size of is measured from AFM analysis is around 14.70 nm. The responsivity photodetector after deposited CuO appear increasing in response

Publication Date
Tue Jan 01 2019
Journal Name
Aip Conference Proceedings
Fabricating and study effect of the concentrations electrolyte for an alkaline electrolysis cell

View Publication Preview PDF
Scopus (4)
Crossref (2)
Scopus Crossref
Publication Date
Sun Apr 16 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Substrate Temperature Effect on the Structure, Morphological and Optical Properties of CuO/Sapphire Thin Films Prepared by Pulsed Laser deposition

This paper addresses the substrate temperature effect on the structure, morphological and optical properties of copper oxide (CuO) thin films deposited by pulsed laser deposition (PLD) method on sapphire substrate of 150nm thickness. The films deposited at two different substrate temperatures (473 and 673)K. The atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR) and UV-VIS transmission spectroscopy were employed to characterize the size, morphology, crystalline structure and optical properties of the prepared thin films. The surface characteristics were studied by using AFM. It is found that as the substrate temperature increases, the grain size increased but the surface roughness decreased.  The FTIR spec

... Show More
View Publication Preview PDF
Publication Date
Fri Feb 08 2019
Journal Name
Iraqi Journal Of Laser
Photoacoustic Imaging for Tumor Detection: An in vitro Simulation Study

Photoacoustic is a unique imaging method that combines the absorption contrast of light or radio frequency waves with ultrasound resolution. When the deposition of this energy is sufficiently short, a thermo-elastic expansion takes place whereby acoustic waves are generated. These waves can be recorded and stored to construct an image. This work presents experimental procedure of laser photoacoustic two dimensional imaging to detect tumor embedded within normal tissue. The experimental work is accomplished using phantoms that are sandwiched from fish heart or blood sac (simulating a tumor) 1-14mm mean diameter embedded within chicken breast to simulate a real tissue. Nd: YAG laser of 1.064μm and 532nm wavelengths, 10ns pulse duration, 4

... Show More
View Publication Preview PDF
Publication Date
Thu Jun 01 2023
Journal Name
Optik
Combination of near-field and scattering effects in plasmonic perovskite solar cell including cobalt doped nickel oxide HTL

View Publication
Scopus (6)
Crossref (5)
Scopus Clarivate Crossref