Breast cancer has got much attention in the recent years as it is a one of the complex diseases that can threaten people lives. It can be determined from the levels of secreted proteins in the blood. In this project, we developed a method of finding a threshold to classify the probability of being affected by it in a population based on the levels of the related proteins in relatively small case-control samples. We applied our method to simulated and real data. The results showed that the method we used was accurate in estimating the probability of being diseased in both simulation and real data. Moreover, we were able to calculate the sensitivity and specificity under the null hypothesis of our research question of being diseased or not.
يتكون الانحدار المقسم من عدة أقسام تفصل بينها نقاط انتماء مختلفة، فتظهر حالة عدم التجانس الناشئة من عملية فصل الأقسام ضمن عينة البحث. ويهتم هذا البحث في تقدير موقع نقطة التغيير بين الأقسام وتقدير معلمات الأنموذج، واقتراح طريقة تقدير حصينة ومقارنتها مع بعض الطرائق المستعملة في الانحدار الخطي المقسم. وقد تم استعمال أحد الطرائق التقليدية (طريقة Muggeo) لإيجاد مقدرات الإمكان الأعظم بالأسلوب الت
... Show MoreThe complexity and variety of language included in policy and academic documents make the automatic classification of research papers based on the United Nations Sustainable Development Goals (SDGs) somewhat difficult. Using both pre-trained and contextual word embeddings to increase semantic understanding, this study presents a complete deep learning pipeline combining Bidirectional Long Short-Term Memory (BiLSTM) and Convolutional Neural Network (CNN) architectures which aims primarily to improve the comprehensibility and accuracy of SDG text classification, thereby enabling more effective policy monitoring and research evaluation. Successful document representation via Global Vector (GloVe), Bidirectional Encoder Representations from Tra
... Show More