The research aims to apply the activities of the green value chain as one of the modern administrative techniques that economic units resort to develop solutions to the pollution problems that occur due to the activity of economic units and their products that may cause damage to the environment as well as the waste of natural resources and to identify the production of environmentally friendly products and reduce the costs of environmental failure of both types Internal and external that may be borne by economic units such as taxes, fines and compensation due to non- observance of environmental requirements and the preservation of human health and protection of the environment.To achieve the goal of the research, the researchers relied on the descriptive analytical approach of the theoretical side by relying on Arabic and foreign books, letters, university theses, articles, research and periodicals related to the topic of the research. Engineers and employees of the aforementioned company.The study concluded a set of conclusions, the most important of which is that there is an effect of green value chain activities in reducing the costs of environmental failure if mechanisms and materials that take into account the environment and human health are used by reducing waste and recycling products to preserve the environment and natural resources. In light of these conclusions, many recommendations were reached, the most important of which is that the economic units must apply value chain activities when producing products to obtain environmentally friendly, non- polluting products that do not cause harm to humans and contribute to avoiding economic units from being subjected to fines, taxes and penalties by complying with the requirements Environmental.
Promoting the production of industrially important aromatic chloroamines over transition-metal nitrides catalysts has emerged as a prominent theme in catalysis. This contribution provides an insight into the reduction mechanism of p-chloronitrobenzene (p-CNB) to p-chloroaniline (p-CAN) over the γ-Mo2N(111) surface by means of density functional theory calculations. The adsorption energies of various molecularly adsorbed modes of p-CNB were computed. Our findings display that, p-CNB prefers to be adsorbed over two distinct adsorption sites, namely, Mo-hollow face-centered cubic (fcc) and N-hollow hexagonal close-packed (hcp) sites with adsorption energies of −32.1 and −38.5 kcal/mol, respectively. We establish that the activation of nit
... Show MoreDate palm silver nanoparticles are a green synthesis method used as antibacterial agents. Today,
there is a considerable interest in it because it is safe, nontoxic, low costly and ecofriendly. Biofilm bacteria
existing in marketed local milk is at highly risk on population health and may be life-threatening as most
biofilm-forming bacteria are multidrug resistance. The goal of current study is to eradicate biofilm-forming
bacteria by alternative treatment green synthesis silver nanoparticles. The biofilm formation by bacterial
isolates was detected by Congo red method. The silver nanoparticles were prepared from date palm
(khestawy) fruit extract. The formed nanoparticles were characterized with UV-Vis
The possibility of using activated carbon developed from date palm seeds wastes as a permeable reactive barrier (PRB) to remove copper from polluted shallow groundwater was investigated. The activated carbon has been developed from date palm seeds by dehydrating methods using concentrated sulfuric acid. Batch tests were performed to characterize the equilibrium sorption properties of new activated carbon in copper-containing aqueous solutions, while the sandy soil (aquifer) was assumed to be inert. Under the studied conditions, the Langmuir isotherm model gives a better fit for the sorption data of copper by activated carbon than other models. At a pilot scale, One-dimensional column experiments were performed, and an integrated model ba
... Show MoreHepatitis C virus (HCV) is a liver disease that affects14 million people. Feasible research was conducted for identifying the genotypes and allele frequency of some single nucleotide polymorphisms (SNPs) of the IL-28β genes and their predictive role in disease incidence in Iraqi patients. The SNPs (rs28416813, rs4803219, rs11881222, and rs8103142) of IL-28β have been associated with susceptibility to several diseases. Ninety eight (98) HCV patients were included in this research; with average age ± SE (42.28 ± 3.44) years. Also, 80 healthy people (with average age ± SE (29.40 ± 2.84) years) were included as a control group. The SNPs were detected by allele-specific PCR (polymerase chain reaction) using specific primers. The re
... Show MoreNovel derivatives of 1-(´1, ´3, ´4, ´6-tetra benzoyl-β-D-fructofuranosyl)-1H- benzotriazole and 1-(´1, ´3, ´4, ´6-tetra benzoyl-β-D-fructofuranosyl)-1H- benzotriazole carrying Schiff bases moiety were synthesised and fully characterised. The protection of D- fructose using benzoyl chloride was synthesized, followed by nucleophilic addition/elimination between benzotria- zole and chloroacetyl chloride to give 1-(1- chloroacetyl)- 1H-benzotriazole. The next step was condensation reaction of protected fructose and 1-(1-chloroacetyl)-1H- benzotriazole producing a new nucleoside analogue. The novel nucleoside analogues underwent a second conden- sation reaction with different aromatic and aliphatic amines to provide new Schiff b
... Show MoreAssessing water quality provides a scientific foundation for the development and management of water resources. The objective of the research is to evaluate the impact treated effluent from North Rustumiyia wastewater treatment plant (WWTP) on the quality of Diyala river. The model of the artificial neural network (ANN) and factor analysis (FA) based on Nemerow pollution index (NPI). To define important water quality parameters for North Al-Rustumiyia for the line(F2), the Nemerow Pollution Index was introduced. The most important parameters of assessment of water variation quality of wastewater were the parameter used in the model: biochemical oxygen demand (BOD), chemical oxygen dem
Abstract: Background: Staphylococcus aureus is Gram-positive bacteria that lives as a normal flora in living organisms but can be pathogenic to humans. Although a relatively unspectacular, nonmotile coccoid bacterium, S. aureus is a dangerous human pathogen in both community-acquired and nosocomial infections. Due to the increasing emergence of new strains of this antibiotic-resistant bacteria, it has become essential to approach different methods to control this pathogen. One of these methods is the antimicrobial photodynamic inactivation process using a low-level laser, in this paper, the Photodynamic effects of Rose Bengal and LLLL on the virulence factors of S.aureus were evaluated.
The aim of this article is to solve the Volterra-Fredholm integro-differential equations of fractional order numerically by using the shifted Jacobi polynomial collocation method. The Jacobi polynomial and collocation method properties are presented. This technique is used to convert the problem into the solution of linear algebraic equations. The fractional derivatives are considered in the Caputo sense. Numerical examples are given to show the accuracy and reliability of the proposed technique.
The efficiency of solar energy absorption in solar heaters is increased by the use of selective absorption coating that possesses high absorption of solar radiation in the UV-visible spectrum as well as low emission at the operating temperature in the infrared region. In this work, novel selective coatings were synthesized by improving the selectivity of chromium oxide (Cr2O3) nanoparticles by doping with carbon nanoparticles using the exploding wire technique for carbon rods by high current in suspended Cr2O3 particles. The structural properties and surface topography were studied by XRD and FE-SEM, which illustrate the carbon-coated Cr2O3 nanoparticles. The prepar
... Show More