Currently, there is an intensive development of bipedal walking robots. The most known solutions are based on the use of the principles of human gait created in nature during evolution. Modernbipedal robots are also based on the locomotion manners of birds. This review presents the current state of the art of bipedal walking robots based on natural bipedal movements (human and bird) as well as on innovative synthetic solutions. Firstly, an overview of the scientific analysis of human gait is provided as a basis for the design of bipedal robots. The full human gait cycle that consists of two main phases is analysed and the attention is paid to the problem of balance and stability, especially in the single support phase when the bipedal movement is unstable. The influences of passive or active gait on energy demand are also discussed. Most studies are explored based on the zero moment. Furthermore, a review of the knowledge on the specific locomotor characteristics of birds, whose kinematics are derived from dinosaurs and provide them with both walking and running abilities, is presented. Secondly, many types of bipedal robot solutions are reviewed, which include nature-inspired robots (human-like and birdlike robots) and innovative robots using new heuristic, synthetic ideas for locomotion. Totally 45 robotic solutions are gathered by thebibliographic search method. Atlas was mentioned as one of the most perfect human-like robots, while the birdlike robot cases were Cassie and Digit. Innovative robots are presented, such asslider robot without knees, robots with rotating feet (3 and 4 degrees of freedom), and the hybrid robot Leo, which can walk on surfaces and fly. In particular, the paper describes in detail the robots’ propulsion systems (electric, hydraulic), the structure of the lower limb (serial, parallel, mixed mechanisms), the types and structures of control and sensor systems, and the energy efficiency of the robots. Terrain roughness recognition systems using different sensor systems based on light detection and ranging or multiple cameras are introduced. A comparison of performance, control and sensor systems, drive systems, and achievements of known human-like and birdlike robots is provided. Thirdly, for the first time, the review comments on the future of bipedal robots in relation to the concepts of conventional (natural bipedal) and synthetic unconventional gait. We critically assess and compare prospective directions for further research that involve the development of navigation systems, artificial intelligence, collaboration with humans, areas for the development of bipedal robot applications in everyday life, therapy, and industry.
Globally, Sustainability is very quickly becoming a fundamental requirement of the construction industry as it delivers its projects; whether buildings or infrastructures. Throughout more than two decades, many modeling schemes, evaluation tools, and rating systems have been introduced en route to realizing sustainable construction. Many of these, however, lack consensus on evaluation criteria, a robust scientific model that captures the logic behind their sustainability performance evaluation, and therefore experience discrepancies between rated results and actual performance. Moreover, very few of the evaluation tools available satisfactorily address infrastructure projects. The res
This paper is concerned with introducing and studying the first new approximation operators using mixed degree system and second new approximation operators using mixed degree system which are the core concept in this paper. In addition, the approximations of graphs using the operators first lower and first upper are accurate then the approximations obtained by using the operators second lower and second upper sincefirst accuracy less then second accuracy. For this reason, we study in detail the properties of second lower and second upper in this paper. Furthermore, we summarize the results for the properties of approximation operators second lower and second upper when the graph G is arbitrary, serial 1, serial 2, reflexive, symmetric, tra
... Show MoreThe research aims to achieve a set of the most important objectives of the review of the role of creative administrative leadership in achieving aspects of economic reform in various government institutions and indicate the role of supervisory awareness of administrative leadership in the revitalization of the role of the internal control system to achieve the best use of available resources. This paper deals with three problems is the loss of financial resources of the state as a result of the growing phenomenon of administrative and financial corruption in the majority of government institutions, and the weakness of the role of the internal control system in the province on the resources available and to achieve the best use of these reso
... Show MoreForty lower premolars with single root canals prepared with ProtaperNext files to size 25, and obturated with GP/sealer using lateral compaction. Teeth divided randomly into four groups (group n=10). Protaper universal retreatment kit (PUR), D-Race desobturation files (DRD), R-Endo retreatment kit (RE) and Hedstrom (H) files (control) were used to remove GP/sealer in each group. Removal effectiveness assessed by measuring the GP /sealer remnants in the roots after sectioning them into two halves. Stereomicroscope with a digital camera used to capture digital images. Images processed by ImageJ software to measure the percentage of GP/sealer remnants surface area in total, coronal, middle and apical areas of the canal. In the coronal area,
... Show MoreOne of the most important problems of Iraqi construction projects is the cost variances, so it is important to identify the problems and shortcomings that cause poor cost control. Through the utilization of questionnaires, the study evaluated how project costs were managed and reported. The questionnaire was distributed to 180 professionals working in the Iraqi construction sector, with a response rate of 91%. The results showed that a high percentage of projects are implemented with a difference between real and estimated costs, and the process of documenting cost data needs to be more secure. On the other hand, there is a weakness in providing the necessary work structure information to monitor costs and a lack of proc
... Show MoreMost below-knee prostheses are manufactured in Iraq without considering the fast progress in smart prostheses, which can offer movements in the desired directions according to the type of control system designed for this purpose. The proposed design appears to have the advantages of simplicity, affordability, better load distribution, suitability for subjects with transtibial amputation, and viability in countries with people having low socio-economic status. The designed prosthetics consisted of foot, ball, and socket joints, two stepper motors, a linkage system, and an EMG shield. All these materials were available in the local markets in Iraq. The experimental results showed t
... Show MoreDirectional control valve is the main part in hydraulic system which has complex construction, such as moving spool to control the direction of actuator for required speed. Utilizing MR fluid properties, direct interface can be realized between magnetic field and fluid power without the need for moving parts like spool in directional control valves. This paper dedicates the experimental test of four ways, three position MR directional control valve. The experimental methods were done by connecting the MR directional control valve with hydraulic actuators. The experiment was conducted to show the principle work of the valve functionally and performance test for valve was done. The valve works proportionally to control the direction a
... Show More