Two new organotin(IV) complexes Me2Snesc (C1) and Bu2Snesc (C2) have been synthesised from the reaction of the corresponding organotin(IV) chloride with the Schiff base ligand 3,4-dihydroxybenzaldehyde-4-ethylsemicarbazone (H2esc). The ligand was prepared in two steps. The first step includes the formation of 4-ethylsemicarbazide, which then reacted with 3,4-dihydroxybenzaldehyde to give the title ligand. Complex formation between the organotin(IV) moiety and the anionic form of 3,4-dihydroxybenzaldehy-4-ethylsemicarbazone occurred through the o-dihydroxy positions. The ligand and its complexes were characterised by elemental analysis, FT-IR and NMR (1H, 13C and 119Sn) spectroscopy. Accordingly, the complexes were proposed to have tetrahedral geometry. The ligand and its tin(IV) complexes were screened for their antimicrobial activities against some Gram-positive and Gram-negative bacteria. The studies demonstrated that complexation can increase the antimicrobial activity, compared with the free ligand.
This work involved the successful synthesis of three new Schiff base complexes, including Ni(II), Mn(II), and Cu(II) complexes. The Schiff base ligand was created by reacting the malonyldihydrazide molecule with naphthaldehyde, and the final step involved reacting the ligand with the corresponding metallic chloride yielding pure target complexes. FTIR, 1 H NMR, 13 C NMR, mass, and UV/Vis spectroscopies were used to comprehensively characterize the produced complexes. These substances have been employed in this study to photo-stabilize polystyrene (PS) and lessen the photo-degradation of its polymeric chains. Several methods, including FTIR, weight loss, viscosity average molecular weight, light and atomic force microscopy, and energy disper
... Show MoreSalicylaldehyde was reacting with 2-amino benzoic acid to produce the Schiff base ligand benzoic acid 2-salicylidene (L). The prepared ligand was identified by Microelemental Analysis, FT.IR and UV-Vis spectroscopic techniques. A new complexes of Co(II),Ni(II),Cu(II) and Zn(II) with Schiff base was prepared in aqueous ethanol with a (1:1) M:L. The prepared complexes were characterized using flame atomic absorption, (C.H.N) Analysis, FT.IR and UV-Vis spectroscopic methods as well as magnetic susceptibility and conductivity measurements. Biological activity of the ligand and complexes against three selected types of bacteria were also examined. Some of the complexes exhibit good bacterial activities. From the obtained data the tetrahedral str
... Show MoreThe new of compounds synthesized by sequence reactions starting from a reaction of 3-phenylenediamine or 4-phenylenediamine with chloroacetyl chloride to produce the compounds [I]a,b, then the compounds[I]a,b reacted with sodium azide to yield compounds[II]a,b that reacted 1,3-dipolarcycloaddition reaction with acrylic acid to give compounds [III]a,b these compounds reacted with methanol led to ester compounds[IV]a,b then reacted with hydrazine to give acid hydrazide [V]a,b . Finally compounds [V]a,b reacted with aromatic aldehydes to product shiff bases derivatives. The compounds characterized by mp. , IR, 1HNMR in addition to mass spectroscopy for some of them the liquid crystals properties were studied by using polarized optical microsco
... Show MoreBackground: Chemotherapeutic medication treatment for cancer is typically used in conjunction with other techniques as part of a routine regimen. It is well established that the capacity of different chemotherapeutic drugs to induce apoptosis is correlated with their anticancer efficacy. Quinazolinone-based drugs have demonstrated excellent responses from several cancer cell types. These substances have a lot of potential for use as building blocks in the creation of apoptosis inducers. Objective: To assess the new quinazolinone derivatives (M1 and M2) that were recently synthesized for their potential to halt wound healing and to use the acridine orange/propidium iodide (AO/PI) double stain to assess their capacity to induce apopto
... Show MoreSeveral new derivatives of 1, 2, 4-triazoles linked to phthalimide moiety were synthesized through following multisteps. The first step involved preparation of 2, 2-diphthalimidyl ethanoic acid [2] via reaction of two moles of phthalimide with dichloroacetic acid. Treatment of the resulted imide with ethanol in the second step afforded 2, 2-diphthalimidyl ester [3] which inturn was introduced in reaction with hydrazine hydrate in the third step, producing the corresponding hydrazide derivative [4]. The synthesized hydazide was introduced in different synthetic paths including treatment with carbon disulfide in alkaline solution then with hydrazine hydrate to afford the new 1, 2, 4-triazole [10]. Reaction of compound [10] with different alde
... Show MoreIn this research two series of the new derivatives of Trimethoprim and paracetamol drugs have been prepared which known as a high medicinal effectiveness. Series (A) is including the interaction of diazonium salt of trimethoprim and coupling with some substituted phenol compounds (2-amino phenol, 3-ethyl phenol, 1-naphthol, 2-nitro phenol, Salbutamol). Series (B) is including the interaction coupling alkali solution of paracetamol with diazonium salt of some substituted aniline compounds (Benzedine, 2, 3-di chloro aniline, Trimethoprim, Anilinium chloride, 2-nitro- 4-chloro aniline).Chemical structures of all synthesized compounds were confirmed by UV-visible and FTIR spectroscopy.
In this present work, [4,4`-(biphenyl-4,4`-diylbis(azan-1-yl-1-ylidene))bis(methan-1-yl-1-ylidene)bis(2-methoxyphenl)(A1),4,4`-(biphenyl-4,4`-diylbis(azan-1-yl-1-ylidene))bis(methan-1-yl-1-ylidene)diphenol(A2),1,1`-(biphenyl-4,4`-diylbis(azan-1-yl-1-ylidene))bis(methan-1-yl-1-ylidene) dinaphthalen-2-ol (A3)]C.S was prepared in 3.5% NaCl. Corrosion prevention at (293-323) K has been studied by using electrochemical measurements. It shows that the utilized inhibitors are of mixed type based on the polarization curves. The results indicated that the inhibition efficiency changes were used with a change according to the functional groups on the benzene ring and through the electrochemical technique. Temperature increases with corrosion current
... Show More