In this article, a new efficient approach is presented to solve a type of partial differential equations, such (2+1)-dimensional differential equations non-linear, and nonhomogeneous. The procedure of the new approach is suggested to solve important types of differential equations and get accurate analytic solutions i.e., exact solutions. The effectiveness of the suggested approach based on its properties compared with other approaches has been used to solve this type of differential equations such as the Adomain decomposition method, homotopy perturbation method, homotopy analysis method, and variation iteration method. The advantage of the present method has been illustrated by some examples.
The reliability of hybrid systems is important in modern technology, specifically in engineering and industrial fields; it is an indicator of the machine's efficiency and ability to operate without interruption for an extended period of time. It also allows for the evaluation of machines and equipment for planning and future development. This study looked at reliability of hybrid (parallel series) systems with asymmetric components using exponential and Pareto distributions. Several simulation experiments were performed to estimate the reliability function of these systems using the Maximum Likelihood method and the Standard Bayes method with a quadratic loss (QL) function and two priors: non-informative (Jeffery) and inform
... Show More The most likely fusion reaction to be practical is Deuterium and Helium-3 (ð·âˆ’ð»ð‘’
3 ), which is highly desirable because both Helium -3 and Deuterium are stable and the reaction produces a 14 ð‘€ð‘’𑉠proton instead of a neutron and the proton can be shielded by magnetic fields. The strongly dependency of the basically hot plasma parameters such as reactivity, reaction rate, and energy for the emitted protons, upon the total cross section, make the problems for choosing the desirable formula for the cross section, the main goal for our present work.
In this paper, the reliability of the stress-strength model is derived for probability P(Y<X) of a component having its strength X exposed to one independent stress Y, when X and Y are following Gompertz Fréchet distribution with unknown shape parameters and known parameters . Different methods were used to estimate reliability R and Gompertz Fréchet distribution parameters, which are maximum likelihood, least square, weighted least square, regression, and ranked set sampling. Also, a comparison of these estimators was made by a simulation study based on mean square error (MSE) criteria. The comparison confirms that the performance of the maximum likelihood estimator is better than that of the other estimators.
Diabetes mellitus is a common health problem worldwide counting about 1.2 million cases in Iraq in 2015. Taking in account of the patient’s beliefs about the prescribed medication had been reported to be one of the most important factors that affects adherence where holding positive beliefs about medications is a prerequisite for intentional adherence. The aim of the current study was to investigate and assess beliefs about medicines among type 2 diabetic patients and to determine possible association between this belief and glycemic control as well as some patient-specific factors. This study is a cross-sectional study carried out on 380 (mean age 56.58± 10.06 years) already diagnosed T2DM patients who attended the National Diabetes
... Show MoreSeveral authors have used ranking function for solving linear programming problem. In This paper is proposed two ranking function for solving fuzzy linear programming and compare these two approach with trapezoidal fuzzy number .The proposed approach is very easy to understand and it can applicable, also the data were chosen from general company distribution of dairy (Canon company) was proposed test approach and compare; This paper prove that the second proposed approach is better to give the results and satisfy the minimal cost using Q.M. Software
This Book is the second edition that intended to be textbook studied for undergraduate/ postgraduate course in mathematical statistics. In order to achieve the goals of the book, it is divided into the following chapters. Chapter One introduces events and probability review. Chapter Two devotes to random variables in their two types: discrete and continuous with definitions of probability mass function, probability density function and cumulative distribution function as well. Chapter Three discusses mathematical expectation with its special types such as: moments, moment generating function and other related topics. Chapter Four deals with some special discrete distributions: (Discrete Uniform, Bernoulli, Binomial, Poisson, Geometric, Neg
... Show More