BCl3 is toxic gas and its detection is of great importance. Thus, here, B3LYP, M06-2X, and B97D density functionals are utilized for probing the effect of decorating Zn, Cd, and Au on the sensing performance of an AlP nano-sheet (AlPNS) in detecting the BCl3. We predict that the interaction of pure AlPNS with BCl3 is physisorption, and the sensing response (SR) of AlPNS is approximately 9.2. The adsorption energy of BCl3 changes from −4.1 to −18.8, −19.1, and −19.5 kcal/mol by decorating the Zn, Cd, and Au metals into the AlPNS surface, respectively. Also, the corresponding SR meaningfully rises to 40.4, 59.0, and 80.9, indicating that by increasing the atomic number of metals, the sensitivity of metal decorated AlPNS (metal@AlPNS) is increased. Therefore, we found that Au-decorating much more increases the sensitivity of AlPNS toward BCl3. As energy decomposing analysis reveals the electrostatic, also known as cation-lone pair interaction, is mostly the nature of the interaction between the BCl3 and metal@AlPNS.
the electron correlation effect for inter-shell can be described by evaluating the fermi hole and partial fermi hole for Li atom comparing with Be+ and B+2 ions
The normalized difference vegetation index (NDVI) is an effective graphical indicator that can be used to analyze remote sensing measurements using a space platform, in order to investigate the trend of the live green vegetation in the observed target. In this research, the change detection of vegetation in Babylon city was done by tracing the NDVI factor for temporal Landsat satellite images. These images were used and utilized in two different terms: in March 19th in 2015 and March 5th in 2020. The Arc-GIS program ver. 10.7 was adopted to analyze the collected data. The final results indicate a spatial variation in the (NDVI), where it increases from (1666.91 𝑘𝑚2) in 2015 to (1697.01 𝑘𝑚2)) in 2020 between the t
... Show MoreThe prevalence of using the applications for the internet of things (IoT) in many human life fields such as economy, social life, and healthcare made IoT devices targets for many cyber-attacks. Besides, the resource limitation of IoT devices such as tiny battery power, small storage capacity, and low calculation speed made its security a big challenge for the researchers. Therefore, in this study, a new technique is proposed called intrusion detection system based on spike neural network and decision tree (IDS-SNNDT). In this method, the DT is used to select the optimal samples that will be hired as input to the SNN, while SNN utilized the non-leaky integrate neurons fire (NLIF) model in order to reduce latency and minimize devices
... Show MoreDetecting protein complexes in protein-protein interaction (PPI) networks is a challenging problem in computational biology. To uncover a PPI network into a complex structure, different meta-heuristic algorithms have been proposed in the literature. Unfortunately, many of such methods, including evolutionary algorithms (EAs), are based solely on the topological information of the network rather than on biological information. Despite the effectiveness of EAs over heuristic methods, more inherent biological properties of proteins are rarely investigated and exploited in these approaches. In this paper, we proposed an EA with a new mutation operator for complex detection problems. The proposed mutation operator is formulate
... Show MoreBecause of their Physico‐chemical characteristics and its composition, the development of new specific analytical methodologies to determine some highly polar pesticides are required. The reported methods demand long analysis time, expensive instruments and prior extraction of pesticide for detection. The current work presents a new flow injection analysis method combined with indirect photometric detection for the determination of Fosetyl‐Aluminum (Fosetyl‐Al) in commercial formulations, with rapid and highly accurate determination involving only construction of manifold system combined with photometric detector without need some of the pre‐treatments to the sample before the analysis such a
The prevalence of using the applications for the internet of things (IoT) in many human life fields such as economy, social life, and healthcare made IoT devices targets for many cyber-attacks. Besides, the resource limitation of IoT devices such as tiny battery power, small storage capacity, and low calculation speed made its security a big challenge for the researchers. Therefore, in this study, a new technique is proposed called intrusion detection system based on spike neural network and decision tree (IDS-SNNDT). In this method, the DT is used to select the optimal samples that will be hired as input to the SNN, while SNN utilized the non-leaky integrate neurons fire (NLIF) model in order to reduce latency and minimize devices
... Show More