In this study, the effect of fire flame on the punching shear strength of steel fiber reinforced concrete flat plates was experimentally investigated using nine half-scale specimens with dimensions of 1500×1500 mm and a total thickness of 100 mm. The main investigated variables comprised the steel fiber volume fraction 0, 1, and 1.5% and the burning steady state temperature 500 and 600 °C. The specimens were divided into three groups, each group consists of three specimens. The specimens in the first group were tested with no fire effect to be the reference specimens, while the others of the second and third groups were tested after being exposed to fire-flame effect. The adopted characteristics of the fire test were; (one hour) burning time duration and 500 and 600 °C steady state temperature with sudden cooling process (water sprinkling directly after burning). The test results proved that exposing to direct fire effect for one hour caused a reduction in the punching shear strength with an increase in the ultimate mid-span deflection. Also, it was noticed that using steel fiber in the concrete mix leads to a significant increase in the punching shear strength for both the unburned and burned specimens. The ultimate punching load increased by about 11 and 16.6% for the unburned specimens with 1.0 and 1.5% steel fiber volume fraction, respectively, and by about 22.4 and 19% for the burned specimens at 500 °C with 1.0 and 1.5% steel fiber volume fraction, respectively. While, it was increased by about 29.2 and 21.5% for the burned specimens at 600 °C with 1.0 and 1.5% steel fiber volume fraction, respectively, as compared with the reference specimen of each group. Doi: 10.28991/cej-2021-03091751 Full Text: PDF
Abstract: Objectives: To investigate the effect of temperature elevation on the bonding strength of resin cement to the zirconia ceramic using fractional CO2 laser. Background: Fractional CO2 laser is an effective surface treatment of zirconia ceramic, as it increases the bonding strength of zirconia to resin cement. Methods: Thirty sintered zirconia discs (10 mm diameter, 2 mm thickness) were prepared and divided to three groups (N=10) and five diffident pulse durations were used in each group (0.1, 0.5, 1, 5 and 10 ms). Group A was treated with 10 W power setting, group B with 20 W and group C with 30 W. During laser irradiation, temperature elevation measurement was recorded for each specimen. Luting cement was bonded to the treated z
... Show MoreA general velocity profile for a laminar flow over a flat plate with zero incidence is obtained by employing a new boundary condition to the other available boundary conditions. The general velocity profile is mathematically simple and nearest to the exact solution. Also other related values, boundary layer thickness, displacement thickness, momentum thickness and coefficient of friction are nearest to the exact solution compared with other corresponding values for other researchers.
In this study tungsten oxide and graphene oxide (GO-WO2.89) were successfully combined using the ultra-sonication method and embedded with polyphenylsulfone (PPSU) to prepare novel low-fouling membranes for ultrafiltration applications. The properties of the modified membranes and performance were investigated using Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), contact angle (CA), water permeation flux, and bovine serum albumin (BSA) rejection. It was found that the modified PPSU membrane fabricated from 0.1 wt.% of GO-WO2.89 possessed the best characteristics, with a 40.82° contact angle and 92.94% porosity. The permeation flux of the best membrane was the highest. The pure water permeation f
... Show MoreThe thermal performance of a flat-plate solar collector (FPSC) using novel heat transfer fluids of aqueous colloidal dispersions of covalently functionalized multi-walled carbon nanotubes with β-Alanine (Ala-MWCNTs) has been studied. Multi-walled carbon nanotubes (MWCNTs) with outside diameters of (< 8 nm) and (20–30 nm) having specific surface areas (SSAs) of (500 m2/g) and (110 m2/g), respectively, were utilized. For each Ala-MWCNTs, waterbased nanofluids were synthesized using weight concentrations of 0.025%, 0.05%, 0.075%, and 0.1%. A MATLAB code was built and a test rig was designed and developed. Heat flux intensities of 600, 800, and 1000 W/m2; mass flow rates of 0.6, 1.0, and 1.4 kg/min; and inlet fluid temperatures of 30, 40, an
... Show MoreThis study examines the structural performance of concrete-encased pultruded Glass Fiber Reinforced Polymer (GFRP) I-sections with shear connections. It specifically focuses on how different parameters affect the latter’s ductility, flexural strength, and load-carrying capacity. The key variables studied include various shear connector types, spacing, and geometries, as well as the compressive strength of concrete and the properties of GFRP. The finite element modeling and experimental validation show that the shear connectors significantly improve the ductility, ultimate capacity, and load transmission efficiency. The present review emphasizes that the shear connectors greatly enhance the structural performance when they are prop
... Show MoreFlexible paving is the most popular type of paving used in road building and one of the biggest problems facing the world's paving business is the rising demand for scarce natural resources. Uncontrolled. Numerous studies have shown that secondary materials reduce the need for traditional materials, offer efficient waste disposal technology and lower the overall cost of paving. The current study aimed to evaluate the efficiency of both fibers and dust on the sustainability and cost of flexible pavement by studying each of polyester fibers as a waste of the textile industry and fibers or rubber particles as one of the rubber waste products, in addition to studying the efficiency of using cement dust and marble dust on the paving proc
... Show MoreMorphologies of ceramic hollow fiber membranes prepared by a combined phase-inversion and sintering method were studied. The organic binder spinning solution containing suspended Al₂O₃ powders was spun to a hollow fiber precursor, which was then sintered at elevated temperatures( 300 ˚C, 1400 ˚C, 25 ˚C) in order to obtain the Al₂O₃ hollow fiber membranes. The spinning solution consisted of polyether sulfone (PES), N-methyl-2-pyrrolidone (NMP), which were used as polymer binder, solvent, respectively. The prepared Al₂O₃ hollow fiber membranes were characterized by a scanning electron microscope (SEM). It is believed that finger-like void formation in asymmetric ceramic membranes is initiated by hydrodynamically unstable vis
... Show MoreThis research describes a new model inspired by Mobilenetv2 that was trained on a very diverse dataset. The goal is to enable fire detection in open areas to replace physical sensor-based fire detectors and reduce false alarms of fires, to achieve the lowest losses in open areas via deep learning. A diverse fire dataset was created that combines images and videos from several sources. In addition, another self-made data set was taken from the farms of the holy shrine of Al-Hussainiya in the city of Karbala. After that, the model was trained with the collected dataset. The test accuracy of the fire dataset that was trained with the new model reached 98.87%.
This paper develops a nonlinear transient three-dimensional heat transfer finite element model and a rate independent three-dimensional deformation model, developed for the CO2 laser welding simulations in Al-6061-T6 alloy. Simulations are performed using an indirect coupled thermal-structural method for the process of welding. Temperature-dependent thermal properties of Al-6061-T6, effect of latent heat of fusion, and the convective and radiative boundary conditions are included in the model. The heat input to the model is assumed to be a Gaussian heat source. The finite element code ANSYS12, along with a few FORTRAN subroutines, are employed to obtain the numerical results. The benefit of the proposed methodology is that it
... Show More