In this study, the effect of fire flame on the punching shear strength of steel fiber reinforced concrete flat plates was experimentally investigated using nine half-scale specimens with dimensions of 1500×1500 mm and a total thickness of 100 mm. The main investigated variables comprised the steel fiber volume fraction 0, 1, and 1.5% and the burning steady state temperature 500 and 600 °C. The specimens were divided into three groups, each group consists of three specimens. The specimens in the first group were tested with no fire effect to be the reference specimens, while the others of the second and third groups were tested after being exposed to fire-flame effect. The adopted characteristics of the fire test were; (one hour) burning time duration and 500 and 600 °C steady state temperature with sudden cooling process (water sprinkling directly after burning). The test results proved that exposing to direct fire effect for one hour caused a reduction in the punching shear strength with an increase in the ultimate mid-span deflection. Also, it was noticed that using steel fiber in the concrete mix leads to a significant increase in the punching shear strength for both the unburned and burned specimens. The ultimate punching load increased by about 11 and 16.6% for the unburned specimens with 1.0 and 1.5% steel fiber volume fraction, respectively, and by about 22.4 and 19% for the burned specimens at 500 °C with 1.0 and 1.5% steel fiber volume fraction, respectively. While, it was increased by about 29.2 and 21.5% for the burned specimens at 600 °C with 1.0 and 1.5% steel fiber volume fraction, respectively, as compared with the reference specimen of each group. Doi: 10.28991/cej-2021-03091751 Full Text: PDF
To evaluate the shear bond strength and interfacial morphology of sound and caries-affected dentin (CAD) bonded to two resin-modified glass ionomer cements (RMGICs) after 24 hours and two months of storage in simulated body fluid at 37°C.
Sixty-four permanent human mandibular first molars (32 sound and 32 with occlusal caries, following the International Caries Detection and Assessment System) were selected. Each prepared substrate (sound and CAD) was co
For the time being, the cold-formed sections are widely used due to their simple manufacturing and construction processes. To be feasible, the strength of cold-formed columns should be determined based on their post-buckling behavior. Post-buckling relations are cumbersome and need design aids similar to those of American Iron and Steel Institute (AISI) to be applicable. These design aids have been developed to sections and materials other than those available in the local market. Therefore, this paper tries to develop a general finite element model to simulate the postbuckling behavior of cold-formed steel columns. Shell element has been used to discretize the web, flanges, and lips of the column. A linear bucking analy
... Show Morethe influence of permeability tensor upon drainage of anisotropic soils under ponded water and steady recharge (rainfall) is theoretically investigated. Tensorial permeability has led to the formulation of mixed type partial differential equations. Since there is no analytical solution to this problem, the formulation is therefore solved numerically by the method of finite elements. The finite element formulation is implemented into a computer model which can be applied to any problem of seepage under steady state
conditions. Two different example problems representing two different flow conditions under full anisotropy have been studied. Results of the model for the isotropic case were checked against exact mathematical solutions de
In this paper, a step-index fiber with core index 1.445 5 1 7 and cladding index 1.443 1 5 7 has been designed and studied. Multimode operation is achieved by using a fiber with core radius 25 μm operating at a wavelength of 1.3 μm. The mode parameters (effective refractive index, phase constant, fractional modal power in the core and cutoff wavelength) were calculated using RP fiber calculator (PRO version 2020). The shapes of the intensity and amplitude distribution of linearly polarized guided modes were shown.
The aim of this work is to study the influence of the type of fiber glass –mat on fatigue behavior of composite material which is manufactured from polyester and E-glass (woven roving, chopped strand mat (CSM)) as a laminate with a constant fiber volume fraction (VF) of 33%. The results showed that the laminates reinforced with E-glass (woven roving) [0/90, ±45.0/90] and [0/90, CSM, 0/90] have lower fatigue strength than the laminates reinforced with E-glass [0/90]3,[CSM]3 and [CSM, 0/90, CSM] although they had different tensile strength; the best laminate was [0/90]3 .
This paper investigates the experimental response of composite reinforced concrete with GFRP and steel I-sections under limited cycles of repeated load. The practical work included testing four beams. A reference beam, two composite beams with pultruded GFRP I-sections, and a composite beam with a steel I-beam were subjected to repeated loading. The repeated loading test started by loading gradually up to a maximum of 75% of the ultimate static failure load for five loading and unloading cycles. After that, the specimens were reloaded gradually until failure. All test specimens were tested under a three-point load. Experimental results showed that the ductility index increased for the composite beams relative to the reference specim
... Show MoreIn this research the behavior of reinforced concrete columns with large side openings under impact loads was studied. The overall cross sectional dimensions of the column specimens used in this research were (500*1400) mm with total height of (14000) mm. The dimensions of side openings were (600*2000) mm. The column was reinforced with (20) mm diameter in longitudinal direction, while (12) mm ties were used in the transverse direction. The effect of eccentric impact loads on the horizontal and vertical displacement for this column was studied. &
... Show More