Preferred Language
Articles
/
zBjehJQBVTCNdQwC_Rum
Distribution and Classification of Medicinal Plants in Zakhikhah Area of Al-Anbar Desert
...Show More Authors

This study included the Zakhikhah area in the Al- Anbar desert, which it bounded on the north, east, and west by the Euphrates River and on the south by the Ramadi-Qaim road. Several exploratory field trips were taken to the study area. During this time, a semi-detailed area survey was carried out based on satellite imagery captured by American Land sat-7, topographic maps, and natural vegetation variance. All necessary field tools, including a digital camera and GPS device, were brought to determine the soil type and collect plant samples. All of these visits are planned to cover the entire state of Zakhikhah. All vegetation cover observations, identifying sampling sites and attempting to inventory and collect medicinal plants in the study area at all stages were recorded. The reasons for the variation in the distribution of medicinal plants in the Zakhikhah area were also presented in this study concerning their distribution sites. The total number of species collected in all stages, according to the findings of this study, was 12. The most abundant plant was the hibiscus, which accounted for 35.40% of the total area and covered 4210.8 acres. The samples were identified, named, and preserved in the University of Anbar’s College of Education for Pure Sciences/Department of Life Sciences herbarium. How to Cite: Fatin H. Al-Dulaimi, 2023. "Distribution and Classification of Medicinal Plants in Zakhikhah Area of Al-Anbar Desert." Journal of Agriculture and Crops, vol. 9, pp. 257-265.

Crossref
View Publication
Publication Date
Thu Jun 01 2023
Journal Name
Baghdad Science Journal
Estimation of Parameters for the Gumbel Type-I Distribution under Type-II Censoring Scheme
...Show More Authors

This paper aims to decide the best parameter estimation methods for the parameters of the Gumbel type-I distribution under the type-II censorship scheme. For this purpose, classical and Bayesian parameter estimation procedures are considered. The maximum likelihood estimators are used for the classical parameter estimation procedure. The asymptotic distributions of these estimators are also derived. It is not possible to obtain explicit solutions of Bayesian estimators. Therefore, Markov Chain Monte Carlo, and Lindley techniques are taken into account to estimate the unknown parameters. In Bayesian analysis, it is very important to determine an appropriate combination of a prior distribution and a loss function. Therefore, two different

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Sat Oct 01 2016
Journal Name
Journal Of Economics And Administrative Sciences
Bayesian Estimator for the Scale Parameter of the Normal Distribution Under Different Prior Distributions
...Show More Authors

In this study, we used Bayesian method to estimate scale parameter for the normal distribution. By considering three different prior distributions such as the square root inverted gamma (SRIG) distribution and the non-informative prior distribution and the natural conjugate family of priors. The Bayesian estimation based on squared error loss function, and compared it with the classical estimation methods to estimate the scale parameter for the normal distribution, such as the maximum likelihood estimation and th

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Jun 11 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
An Efficient Single Stage Shrinkage Estimator for the Scale parameter of Inverted Gamma Distribution
...Show More Authors

 The present  paper agrees  with estimation of scale parameter θ of the Inverted Gamma (IG) Distribution when the shape parameter α is known (α=1), bypreliminarytestsinglestage shrinkage estimators using  suitable  shrinkage weight factor and region.  The expressions for the Bias, Mean Squared Error [MSE] for the proposed estimators are derived. Comparisons between the considered estimator with the usual estimator (MLE) and with the existing estimator  are performed .The results are presented in attached tables.

View Publication Preview PDF
Crossref
Publication Date
Thu Aug 25 2016
Journal Name
International Journal Of Mathematics Trends And Technology
Pretest Single Stage Shrinkage Estimator for the Shape Parameter of the Power Function Distribution
...Show More Authors

View Publication
Crossref (1)
Crossref
Publication Date
Thu Dec 01 2011
Journal Name
Iraqi Journal Of Physics
Design of Achromatic Combined Quadrupole Lens Using the Modified Bell-Shaped Field Distribution Model
...Show More Authors

The optimization calculations are made to find the optimum properties of combined quadrupole lens consist of electrostatic and magnetic lenses to produce achromatic lens. The modified bell-shaped model is used and the calculation is made by solving the equation of motion and finding the transfer matrices in convergence and divergence planes, these matrices are used to find the properties of lens as the magnification and aberrations coefficients. To find the optimum values of chromatic and spherical aberrations coefficients, the effect of both the excitation parameter of the lens (n) and the effective length of the lens into account as effective parameters in the optimization processing

View Publication Preview PDF
Publication Date
Sun Apr 06 2008
Journal Name
Diyala Journal For Pure Science
Preliminary Test Bayesian –Shrunken Estimators for the Mean of Normal Distribution with Known Variance
...Show More Authors

Publication Date
Mon Sep 25 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
On Double Stage Shrinkage Estimator For the Variance of Normal Distribution With Unknown Mean
...Show More Authors

     This paper is concerned with preliminary test double stage shrinkage estimators to estimate the variance (s2) of normal distribution when a prior estimate  of the actual value (s2) is a available when the mean is unknown  , using specifying shrinkage weight factors y(×) in addition to pre-test region (R).

      Expressions for the Bias, Mean squared error [MSE (×)], Relative Efficiency [R.EFF (×)], Expected sample size [E(n/s2)] and percentage of overall sample saved of proposed estimator were derived. Numerical results (using MathCAD program) and conclusions are drawn about selection of different constants including in the me

... Show More
View Publication Preview PDF
Publication Date
Thu Jun 30 2022
Journal Name
Journal Of Economics And Administrative Sciences
Using Genetic Algorithm to Estimate the Parameters of the Gumbel Distribution Function by Simulation
...Show More Authors

In this research, the focus was on estimating the parameters on (min- Gumbel distribution), using the maximum likelihood method and the Bayes method. The genetic algorithmmethod was employed in estimating the parameters of the maximum likelihood method as well as  the Bayes method. The comparison was made using the mean error squares (MSE), where the best  estimator  is the one who has the least mean squared error. It was noted that the best estimator was (BLG_GE).

View Publication Preview PDF
Crossref
Publication Date
Tue May 01 2018
Journal Name
Journal Of Physics: Conference Series
Study of vegetation cover distribution using DVI, PVI, WDVI indices with 2D-space plot
...Show More Authors

View Publication
Scopus (33)
Crossref (23)
Scopus Clarivate Crossref
Publication Date
Sun Jun 15 2025
Journal Name
Iraqi Journal Of Laser
Performance Enhancement of Metasurface Grating Polarizer Using Deep Learning for Quantum Key Distribution Systems
...Show More Authors

Metasurface polarizers are essential optical components in modern integrated optics and play a vital role in many optical applications including Quantum Key Distribution systems in quantum cryptography. However, inverse design of metasurface polarizers with high efficiency depends on the proper prediction of structural dimensions based on required optical response. Deep learning neural networks can efficiently help in the inverse design process, minimizing both time and simulation resources requirements, while better results can be achieved compared to traditional optimization methods. Hereby, utilizing the COMSOL Multiphysics Surrogate model and deep neural networks to design a metasurface grating structure with high extinction rat

... Show More
View Publication Preview PDF
Crossref