Objectives To quantify the reproducibility of the drill calibration process in dynamic navigation guided placement of dental implants and to identify the human factors that could affect the precision of this process in order to improve the overall implant placement accuracy. Methods A set of six drills and four implants were calibrated by three operators following the standard calibration process of NaviDent® (ClaroNav Inc.). The reproducibility of the position of each tip of a drill or implant was calculated in relation to the pre-planned implants’ entry and apex positions. Intra- and inter-operator reliabilities were reported. The effects of the drill length and shape on the reproducibility of the calibration process were also investigated. The outcome measures for reproducibility were expressed in terms of variability range, average and maximum deviations from the mean distance. Results A satisfactory inter-rater reproducibility was noted. The precision of the calibration of the tip position in terms of variability range was between 0.3 and 3.7 mm. We noted a tendency towards a higher precision of the calibration process with longer drills. More calibration errors were observed when calibrating long zygomatic implants with non-locking adapters than with pointed drills. Flexible long-pointed drills had low calibration precision that was comparable to the non-flexible short-pointed drills. Conclusion The clinicians should be aware of the calibration error associated with the dynamic navigation placement of dental and zygomatic implants. This should be taken in consideration especially for long implants, short drills, and long drills that have some degree of flexibility. Clinical significance Dynamic navigation procedures are associated with an inherent drill calibration error. The manual stability during the calibration process is crucial in minimising this error. In addition, the clinician must never ignore the prescribed accuracy checking procedures after each calibration process.
The introduction of concrete damage plasticity material models has significantly improved the accuracy with which the concrete structural elements can be predicted in terms of their structural response. Research into this method's accuracy in analyzing complex concrete forms has been limited. A damage model combined with a plasticity model, based on continuum damage mechanics, is recommended for effectively predicting and simulating concrete behaviour. The damage parameters, such as compressive and tensile damages, can be defined to simulate concrete behavior in a damaged-plasticity model accurately. This research aims to propose an analytical model for assessing concrete compressive damage based on stiffness deterioration. The prop
... Show MoreThe drill bit is the most essential tool in drilling operation and optimum bit selection is one of the main challenges in planning and designing new wells. Conventional bit selections are mostly based on the historical performance of similar bits from offset wells. In addition, it is done by different techniques based on offset well logs. However, these methods are time consuming and they are not dependent on actual drilling parameters. The main objective of this study is to optimize bit selection in order to achieve maximum rate of penetration (ROP). In this work, a model that predicts the ROP was developed using artificial neural networks (ANNs) based on 19 input parameters. For the
Hiding technique for dynamic encryption text using encoding table and symmetric encryption method (AES algorithm) is presented in this paper. The encoding table is generated dynamically from MSB of the cover image points that used as the first phase of encryption. The Harris corner point algorithm is applied on cover image to generate the corner points which are used to generate dynamic AES key to second phase of text encryption. The embedded process in the LSB for the image pixels except the Harris corner points for more robust. Experimental results have demonstrated that the proposed scheme have embedding quality, error-free text recovery, and high value in PSNR.
The Planning and Resource Development Department of the Iraqi Ministry of Health is very interested in improving medical care, health education, and village training programs. Accordingly, and through the available capabilities of the ministry, itdesires to allocate seven health centers to four villages in Baghdad, Iraq therefore the ministry needs to determine the number of health centers allocated to each of these villages which achieves the greatest degree of the overall effectiveness of the seven health centers in a fuzzy environment. The objective of this study is to use a fuzzy dynamic programming(DP) method to determine the optimal allocation of these centers, which allows the greatest overall effectiveness of these health centers
... Show MoreIraq is located near the northern tip of the Arabian plate, which is advancing northwards relative to the Eurasian plate, and is predictably, a tectonically active country. Seismic activity in Iraq increased significantly during the last decade. So structural and geotechnical engineers have been giving increasing attention to the design of buildings for earthquake resistance. Dynamic properties play a vital role in the design of structures subjected to seismic load. The main objective of this study is to prepare a data base for the dynamic properties of different soils in seismic active zones in Iraq using the results of cross hole and down hole tests. From the data base collected it has been observed that the average ve
... Show MoreThe paper presents an original method to make the geometric synthesis of the rotary cam and translated tappet with roll. Classical method uses to the geometric synthesis and the reduced tappet velocity, and in this mode the geometric classic method become a geometric and kinematic synthesis method. The new geometric synthesis method uses just the geometric parameters (without velocities), but one utilizes and a condition to realize at the tapped the velocities predicted by the tapped movement laws imposed by the cam profile. Then, it makes the dynamic analyze for the imposed cam profile, and one modify the cam profile geometric parameters to determine a good dynamic response (functionality). In this mode it realizes the dynamic synthesis
... Show MoreThe calibration of the three meter Baghdad University Radio Telescope (BURT) has been performed using two types of calibrations: Antenna Position calibration, and Detector calibration. The sun is used as a reference source to calibrate the telescope. The antenna position Azimuth (Az), and Elevation (El) are calibrate according to sun's azimuth and elevation in the date (11/10/2017; at time 10:19 AM). A calibration report is designed to illustrate the calibration parameters for each specific date and time. The detector calibration is representing a study for power spectrum response for the sun according to radio telescope frequency band (1.3 GHz – 1.5 GHz) with central frequency (1.42 GHz). Drift Scan function in the telescope's softwar
... Show MoreInternet of Things (IoT) contributes to improve the quality of life as it supports many applications, especially healthcare systems. Data generated from IoT devices is sent to the Cloud Computing (CC) for processing and storage, despite the latency caused by the distance. Because of the revolution in IoT devices, data sent to CC has been increasing. As a result, another problem added to the latency was increasing congestion on the cloud network. Fog Computing (FC) was used to solve these problems because of its proximity to IoT devices, while filtering data is sent to the CC. FC is a middle layer located between IoT devices and the CC layer. Due to the massive data generated by IoT devices on FC, Dynamic Weighted Round Robin (DWRR)
... Show More