Objectives To quantify the reproducibility of the drill calibration process in dynamic navigation guided placement of dental implants and to identify the human factors that could affect the precision of this process in order to improve the overall implant placement accuracy. Methods A set of six drills and four implants were calibrated by three operators following the standard calibration process of NaviDent® (ClaroNav Inc.). The reproducibility of the position of each tip of a drill or implant was calculated in relation to the pre-planned implants’ entry and apex positions. Intra- and inter-operator reliabilities were reported. The effects of the drill length and shape on the reproducibility of the calibration process were also investigated. The outcome measures for reproducibility were expressed in terms of variability range, average and maximum deviations from the mean distance. Results A satisfactory inter-rater reproducibility was noted. The precision of the calibration of the tip position in terms of variability range was between 0.3 and 3.7 mm. We noted a tendency towards a higher precision of the calibration process with longer drills. More calibration errors were observed when calibrating long zygomatic implants with non-locking adapters than with pointed drills. Flexible long-pointed drills had low calibration precision that was comparable to the non-flexible short-pointed drills. Conclusion The clinicians should be aware of the calibration error associated with the dynamic navigation placement of dental and zygomatic implants. This should be taken in consideration especially for long implants, short drills, and long drills that have some degree of flexibility. Clinical significance Dynamic navigation procedures are associated with an inherent drill calibration error. The manual stability during the calibration process is crucial in minimising this error. In addition, the clinician must never ignore the prescribed accuracy checking procedures after each calibration process.
Soil is the cardinal resource for agricultural crops. Healthy soil will produce healthy plants. Since healthy soil is the important goal for the farmers, they need to select the best tillage system to achieve that goal. There are two main types of tillage systems. Conservation tillage (no-tillage farming) uses agricultural machinery that performs a double function; tillage and seed farming simultaneously. In contrast, conventional tillage farming uses multiple agricultural machines to till and seed the soil. The farmers in the northern governorates of Iraq have used the conservation farming system for a long time. However, the farmers who live in the middle and southern governorates in Iraq use conventional tillage farming. Because most of
... Show MoreThe current research seeks to identify the most important humanitarian issues of a sacred and very important group in all the heavenly religions and human societies, namely the elderly, to identify their significant problems and health problems, and What are the effects of these problems on their mental health and which is the ultimate goal of human resources in All parts of the world? The study relied on what is available from the sources in the literature starting from the messages of heaven and the Islamic religion followed with humanitarian, social, legal and psychological postulates. The research included four systematic chapters included the definition research and identification of the problem, importance, objectives and terminolo
... Show MoreThe study showed flow rates and the interaction between the settlements served by applying the model of gravity theory to measure depending on the number of the population between city Najaf and the rest of the other settlements served and using three functions of disability, time and cost, as recorded an increase in the interaction index with some settlements like them Kufa, Abbasid and Manathira, while the indicator contrast was in other settlements, either when the application of the gravity model depending on trips and socio-economic characteristics accuracy rate was more pronounced.
The location of fire brigade stations and equipment has a significant impact on the efficacy and efficiency of fire brigade department services. The challenge addressed by this study was that the fire brigade department required a consistent and repeatable technique to assess the response capabilities and safeguarding levels offered as the city of Samawah/Iraq grew and changed. Evaluating the locations of the current fire brigade stations in the city of Samawah is the aspect addressed by the research to determine the accuracy and validity of the locations of these stations by the competent authorities and their suitability to the area of the city’s neighborhoods and its residents. The Iraqi Ministry of Housing, Construction, Municipalitie
... Show MoreIn this paper, our purpose is to study the classical continuous optimal control (CCOC) for quaternary nonlinear parabolic boundary value problems (QNLPBVPs). The existence and uniqueness theorem (EUTh) for the quaternary state vector solution (QSVS) of the weak form (WF) for the QNLPBVPs with a given quaternary classical continuous control vector (QCCCV) is stated and proved via the Galerkin Method (GM) and the first compactness theorem under suitable assumptions(ASSUMS). Furthermore, the continuity operator for the existence theorem of a QCCCV dominated by the QNLPBVPs is stated and proved under suitable conditions.
Industrial characteristics calculations concentrated on the physical properties for break down voltage in sf6, cf4 gases and their mixture with different concentrations are presented in our work. Calculations are achieved by using an improved modern code simulated on windows technique. Our results give rise to a compatible agreement with the other experimental published data.
Some relations of inclusion and their properties are investigated for functions of type " -valent that involves the generalized operator of Srivastava-Attiya by using the principle of strong differential subordination.
The purpose of this research is to implement the orthogonal polynomials associated with operational matrices to get the approximate solutions for solving two-dimensional elliptic partial differential equations (E-PDEs) with mixed boundary conditions. The orthogonal polynomials are based on the Standard polynomial (
In this paper, three approximate methods namely the Bernoulli, the Bernstein, and the shifted Legendre polynomials operational matrices are presented to solve two important nonlinear ordinary differential equations that appeared in engineering and applied science. The Riccati and the Darcy-Brinkman-Forchheimer moment equations are solved and the approximate solutions are obtained. The methods are summarized by converting the nonlinear differential equations into a nonlinear system of algebraic equations that is solved using Mathematica®12. The efficiency of these methods was investigated by calculating the root mean square error (RMS) and the maximum error remainder (𝑀𝐸𝑅n) and it was found that the accuracy increases with increasi
... Show More