أثبتت الشبكات المحددة بالبرمجيات (SDN) تفوقها في معالجة مشاكل الشبكة العادية مثل قابلية التوسع وخفة الحركة والأمن. تأتي هذه الميزة من SDN بسبب فصل مستوى التحكم عن مستوى البيانات. على الرغم من وجود العديد من الأوراق والدراسات التي تركز على إدارة SDN، والرصد، والتحكم، وتحسين QoS، إلا أن القليل منها يركز على تقديم ما يستخدمونه لتوليد حركة المرور وقياس أداء الشبكة. كما أن المؤلفات تفتقر إلى مقارنات بين الأدوات والأساليب المستخدمة في هذا السياق. تقدم هذه الورقة كيفية محاكاة إحصاءات المرور وتوليدها والحصول عليها من بيئة SDN. وبالإضافة إلى ذلك، تعالج المقارنة بين الأساليب المستخدمة في جمع بيانات شبكة المعرفة برمجياً لاستكشاف قدرة كل طريقة، وبالتالي تحديد البيئة المناسبة لكل طريقة. تمت محاكاة اختبار SDN باستخدام برنامج Mininet مع طوبولوجيا الأشجار ومفاتيح OpenFlow. تم توصيل وحدة تحكم RYU بإرسال التحكم. تُستخدم الأدوات الشهيرة iperf3 و ping و python scripts لجمع مجموعات بيانات الشبكة من عدة أجهزة في الشبكة. تم استخدام Wireshark وتطبيقات RYU وأمر ovs-ofctl لمراقبة مجموعة البيانات المجمعة. تظهر النتائج نجاحًا في إنشاء عدة أنواع من مقاييس الشبكة لاستخدامها في المستقبل لتدريب الآلة أو خوارزميات التعلم العميق. وخلصت إلى أنه عند توليد البيانات لغرض التحكم في الازدحام، فإن iperf3 هو أفضل أداة، في حين أن ping مفيد عند توليد البيانات لغرض الكشف عن هجمات DDoS. تعد تطبيقات RYU أكثر ملاءمة للاستفسار عن جميع تفاصيل طوبولوجيا الشبكة نظرًا لقدرتها على عرض الطوبولوجيا وخصائص التبديل وإحصائيات التبديل. كما تم استكشاف العديد من العقبات والأخطاء وإدراجها ليتم منعها عندما يحاول الباحثون إنشاء مجموعات البيانات هذه في جهودهم العلمية التالية.
This research sought to present a concept of cross-sectional data models, A crucial double data to take the impact of the change in time and obtained from the measured phenomenon of repeated observations in different time periods, Where the models of the panel data were defined by different types of fixed , random and mixed, and Comparing them by studying and analyzing the mathematical relationship between the influence of time with a set of basic variables Which are the main axes on which the research is based and is represented by the monthly revenue of the working individual and the profits it generates, which represents the variable response And its relationship to a set of explanatory variables represented by the
... Show MoreA fast moving infrared excess source (G2) which is widely interpreted as a core-less gas and dust cloud approaches Sagittarius A* (Sgr A*) on a presumably elliptical orbit. VLT
Thyroid disease is a common disease affecting millions worldwide. Early diagnosis and treatment of thyroid disease can help prevent more serious complications and improve long-term health outcomes. However, thyroid disease diagnosis can be challenging due to its variable symptoms and limited diagnostic tests. By processing enormous amounts of data and seeing trends that may not be immediately evident to human doctors, Machine Learning (ML) algorithms may be capable of increasing the accuracy with which thyroid disease is diagnosed. This study seeks to discover the most recent ML-based and data-driven developments and strategies for diagnosing thyroid disease while considering the challenges associated with imbalanced data in thyroid dise
... Show MoreThe hydrological process has a dynamic nature characterised by randomness and complex phenomena. The application of machine learning (ML) models in forecasting river flow has grown rapidly. This is owing to their capacity to simulate the complex phenomena associated with hydrological and environmental processes. Four different ML models were developed for river flow forecasting located in semiarid region, Iraq. The effectiveness of data division influence on the ML models process was investigated. Three data division modeling scenarios were inspected including 70%–30%, 80%–20, and 90%–10%. Several statistical indicators are computed to verify the performance of the models. The results revealed the potential of the hybridized s
... Show MoreGenerally, statistical methods are used in various fields of science, especially in the research field, in which Statistical analysis is carried out by adopting several techniques, according to the nature of the study and its objectives. One of these techniques is building statistical models, which is done through regression models. This technique is considered one of the most important statistical methods for studying the relationship between a dependent variable, also called (the response variable) and the other variables, called covariate variables. This research describes the estimation of the partial linear regression model, as well as the estimation of the “missing at random” values (MAR). Regarding the
... Show MorePrecise forecasting of pore pressures is crucial for efficiently planning and drilling oil and gas wells. It reduces expenses and saves time while preventing drilling complications. Since direct measurement of pore pressure in wellbores is costly and time-intensive, the ability to estimate it using empirical or machine learning models is beneficial. The present study aims to predict pore pressure using artificial neural network. The building and testing of artificial neural network are based on the data from five oil fields and several formations. The artificial neural network model is built using a measured dataset consisting of 77 data points of Pore pressure obtained from the modular formation dynamics tester. The input variables
... Show Morewith an organized propaganda campaign. This military campaign was helped to formulate its speech by many institutions, research centers, and knowledge and intelligence circles in order to mobilize public opinion gain supporters and face the opponents by different means depending on a variety of styles to achieve its required effects.
After the US occupation of Iraq, US media fighters sought to influence the Iraqi public opinion and making them convinced them of the important presence of US military forces in Iraq which necessitated finding its justification through the use of persuasive techniques in its intensive propaganda campaigns.
This research discusses the most important
In recent years, the Global Navigation Satellite Services (GNSS) technology has been frequently employed for monitoring the Earth crust deformation and movement. Such applications necessitate high positional accuracy that can be achieved through processing GPS/GNSS data with scientific software such as BERENSE, GAMIT, and GIPSY-OSIS. Nevertheless, these scientific softwares are sophisticated and have not been published as free open source software. Therefore, this study has been conducted to evaluate an alternative solution, GNSS online processing services, which may obtain this privilege freely. In this study, eight years of GNSS raw data for TEHN station, which located in Iran, have been downloaded from UNAVCO website
... Show More