Remote sensing data are increasingly being used in digital archaeology for the potential non-invasive detection of archaeological remains. The purpose of this research is to evaluate the capability of standalone (LiDAR and aerial photogrammetry) and integration/fusion remote sensing approaches in improving the prospecting and interpretation of archaeological remains in Cahokia’s Grand Plaza. Cahokia Mounds is an ancient area; it was the largest settlement of the Mississippian culture located in southwestern Illinois, USA. There are a limited number of studies combining LiDAR and aerial photogrammetry to extract archaeological features. This article, therefore, combines LiDAR with photogrammetric data to create new datasets and investigate whether the new data can enhance the detection of archaeological/ demolished structures in comparison to the standalone approaches. The investigations are implemented based on the hillshade, gradient, and sky view factor visual analysis techniques, which have various merits in revealing topographic features. The outcomes of this research illustrate that combining data derived from different sources can not only confirm the detection of remains but can also reveal more remains than standalone approaches. This study demonstrates that the use of combination remote sensing approaches provides archaeologists with another powerful tool for site analysis.
The aim of the research is to find out the effect of the SPAWN strategy on the life skills of second-intermediate-grade students. This study stage represented the research community within the intermediate and secondary governmental daytime schools affiliated with the Directorate of Education of Diwaniyah. The experiment was applied in Al-Razai Intermediate School on a sample of second-grade intermediate students, including 66 students distributed into two groups: (32) students within the experimental group and (34) students within the control group. The two groups were equivalent with a number of variables (chronological age, intelligence test, previous information test, life skills scale). The results indicated that the two groups were
... Show MoreThe research stems from its goal of identifying the impact of visual management on the strategic acceleration of business organizations and the state of this effect through the knowledge embedding in the Iraqi oil companies. The oil sector was tested, represented by (3) oil companies, and a sample of (151) individuals who participated in activating the visual management, distributed in higher management levels. The research relied on the descriptiveanalytical approach and the questionnaire was a main tool for collecting data and information. The results showed that visual management positively affects strategic acceleration. Moreover, This effect is amplified by the mediating role played by Embedding Knowledge.
This paper deals with two preys and stage-structured predator model with anti-predator behavior. Sufficient conditions that ensure the appearance of local and Hopf bifurcation of the system have been achieved, and it’s observed that near the free predator, the free second prey and the free first prey equilibrium points there are transcritical or pitchfork and no saddle node. While near the coexistence equilibrium point there is transcritical, pitchfork and saddle node bifurcation. For the Hopf bifurcation near the coexistence equilibrium point have been studied. Further, numerical analysis has been used to validate the main results.
Deep learning has recently received a lot of attention as a feasible solution to a variety of artificial intelligence difficulties. Convolutional neural networks (CNNs) outperform other deep learning architectures in the application of object identification and recognition when compared to other machine learning methods. Speech recognition, pattern analysis, and image identification, all benefit from deep neural networks. When performing image operations on noisy images, such as fog removal or low light enhancement, image processing methods such as filtering or image enhancement are required. The study shows the effect of using Multi-scale deep learning Context Aggregation Network CAN on Bilateral Filtering Approximation (BFA) for d
... Show MoreThe main object of this article is to study and introduce a subclass of meromorphic univalent functions with fixed second positive defined by q-differed operator. Coefficient bounds, distortion and Growth theorems, and various are the obtained results.
During COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieve
... Show MoreIn this study, an experimental investigation had conducted for six high strength laced reinforced concrete one-way slabs to discover the behavior of laced structural members after being exposed to fire flame (high temperature). Self-compacted concrete (SCC) had used to achieve easy casting and high strength concrete. All the adopted specimens were identical in their compressive strength of ( , geometric layout 2000 750 150 mm and reinforcement specifics except those of lacing steel content, three ratios of laced steel reinforcement of (0.0021, 0.0040 and 0.0060) were adopted. Three specimens were fired with a steady state temperature of for two hours duration and then after the specimens were cooled suddenly by spraying water. The
... Show More