In this manuscript, the effect of substituting strontium with barium on the structural properties of Tl0.8Ni0.2Sr2-xBrxCa2Cu3O9-δcompound with x= 0, 0.2, 0.4, have been studied. Samples were prepared using solid state reaction technique, suitable oxides alternatives of Pb2O3, CaO, BaO and CuO with 99.99% purity as raw materials and then mixed. They were prepared in the form of discs with a diameter of 1.5 cm and a thickness of (0.2-0.3) cm under pressures 7 tons / cm2, and the samples were sintered at a constant temperature of 860 ° C. The structural properties were studied using X-ray diffraction for all samples, and the results showed that the samples have tetragonal structure and the change of the parameters structure with the change of the barium concentration. Full Width Half Maximum (FWHM) was calculated by Orange Pro using X-RAY data. The crystal size was calculated using Scherrer and Willeamson-Heall methods, where the results showed that the crystal size, compliance and degree of crystallinity changed with the change of barium concentration, and the highest average for the crystal size was 70.0271nm at x=0, and crystallization at 61.46% at x=0.6, and the strain decreased to 0.0037 when barium concentration equals 0.4.
In this work, some of new 2-benzylidenehydrazinecarbothioamide derivatives have been prepared by condensation of thiosemicarbazide and different substituted aromatic benzaldehydes in presence of glacial acetic acid to give compounds (1-6), these compounds have characterized by its physical properties and spectroscopic methods. This work also included theoretical study to prove the ability of these compounds as corrosion inhibitors; The program package of Gaussian 09W with its graphical user interface GaussView 5.0 had used for this purpose; the methods of Density Functional Theory (DFT) with basis set of 6-311G (d,p) / hybrid function of B3LYP and semiempirical method of PM3 have been used, the study included theoretical simulation
... Show Moreتم تحضير ثلاث معقدات جديدة Ni (II)و Cu (II) و Zn (II) باستخدام الليكند المحضر الجديد من تفاعل حامض مالونيك ثنائي هيدرازايد مع 2-بيريدين كربوكسالديهايد. حيث شخصت المعقدات لمحضرة وكذلك الليكند باستخدام تقنيات مختلفة مثل FT-IR و UV-Vis و Mass و 1H-NMR و 13C-NMR وتحليل العناصر CHN و تقدير محتوى الكلور والموصلية المولارية والحساسية المغناطيسية والامتصاص الذري لتشخيص هذه المركبات. لكل معقد محضر جديد من النيكل والنحاس والزنك ، كشفت نتائج ا
... Show MoreAbstract: In this paper, a U-shaped probe with a curvature diameter of half a centimeter was implemented using plastic optical fibers. A layer of the outer shell of the fibers was removed by polishing to a D-section. The sensor was tested by immersing it in a sodium chloride solution with variable refractive index depending on solution concentrations ranging from 1.333 to 1.363. In this design, the sensor experienced a decrease in its intensity as the concentration of the solution increased. The next step The sensor was coated with a thin layer of gold with a thickness of 20 nm, and the sensor was tested with the same solutions which resulted in a shift in wavelengths where the shift in wavelength was 5.37 nm and sensiti
... Show MoreA Multiple System Biometric System Based on ECG Data
The effect of doping by methyl red and methyl blue on the absorption spectra and the optical energy gap of poly (methyl methacrylat) PMMA film have been studied. The optical transmission (T%) in the wavelength range 190-900 nm for films deposited by using solvent casting method were measured. The Absorptance data reveals that the doping affected the absorption edge as a red and blue shift in its values. The films show indirect allowed interband transitions that influenced by the doping. Optical constants; refractive index, extinction coefficient and real and imaginary part of dielectric constant were calculated and correlated with doping.
The spectroscopic properties, potential energy curve, dipole moments, total charge density, Electrostatic potential as well as the thermodynamic properties of selenium diatomic halides have been studied using code Mopac.7.21 and hyperchem, semi-empirical molecular orbital of MNDO-method (modified neglected of differential overlap) of parameterization PM3 involving quantum mechanical semi-empirical Hamiltonian. The relevant molecular parameters like interatomic distance, bond angle, dihedral angle and net charge were also calculated.
In this study, the effect of design parameters such as pipe diameter, pipe wall thickness, pipe material and the effect of fluid velocity on the natural frequency of fluid-structure interaction in straight pipe conveying fully developed turbulent flow were investigate numerically,analytically and experimentally. Also the effect of support conditions, simply-simply and clamped-clamped was investigated. Experimentally, pipe vibrations were characterized by accelerometer mounted on the pipe wall. The natural frequencies of vibration were analyzed by using Fast Fourier Transformer (FFT). Five test sections of two different pipe diameters of 76.2
mm and 50.8 mm with two pipe thicknesses of 3.7 mm and 2.4 mm and two pipe materials,stainles
In this study the thermal conductivity of the epoxy composites were characterized as function of volume fraction, particle size of fillers and the time of immersion(30,60,90)days in water .Composites plates were prepared by incorporating (bi-directional) (0º-90º) glass fiber and silicon carbide (SiC) particles of (0.1,0.5,1)mm as particle size at (10%,20%,30%,40%) percent volume in epoxy matrix.
The composites shows slightly increase of the thermal conductivity with increasing volume fraction, particle size and increase with increasing the days of immersion in water. The maximum thermal conductivity (0.51W/m.K) was obtained before the immersion in water at 90 days for epoxy reinforcement by bi-directional glass fiber and SiC particl