Fear, harvesting, hunting cooperation, and antipredator behavior are all important subjects in ecology. As a result, a modified Leslie-Gower prey-predator model containing these biological aspects is mathematically constructed, when the predation processes are described using the Beddington-DeAngelis type of functional response. The solution's positivity and boundedness are studied. The qualitative characteristics of the model are explored, including stability, persistence, and bifurcation analysis. To verify the gained theoretical findings and comprehend the consequences of modifying the system's parameters on their dynamical behavior, a detailed numerical investigation is carried out using MATLAB and Mathematica. It is discovered that the presence of these components enriches the system's dynamic behavior, resulting in bi-stable behavior.
The study aimed to reveal the role of social capital represented by its dimensions (structural, relational, and cognitive) in strengthening the management of excellence in Azadi Hospital / Duhok. In order to reach the goal of the study, the study variables were highlighted in theory through framing concepts and literary contributions for researchers in this field, In the field, the questionnaire was used as a basic tool to collect data from the individuals in the research sample who were represented by officials and individuals working from administrators and technicians, as (120) forms were distributed to the respondents, and (110) were retrieved from them in a way that is valid for analysis. Several statistical methods have bee
... Show MoreIn this study, we set up and analyze a cancer growth model that integrates a chemotherapy drug with the impact of vitamins in boosting and strengthening the immune system. The aim of this study is to determine the minimal amount of treatment required to eliminate cancer, which will help to reduce harm to patients. It is assumed that vitamins come from organic foods and beverages. The chemotherapy drug is added to delay and eliminate tumor cell growth and division. To that end, we suggest the tumor-immune model, composed of the interaction of tumor and immune cells, which is composed of two ordinary differential equations. The model’s fundamental mathematical properties, such as positivity, boundedness, and equilibrium existence, are exami
... Show MoreIn this paper, a four species mathematical models involving different types of ecological interactions is proposed and analyzed. Holling type – II functional response is a doubted to describes the behavior of predation. The existence, uniqueness and boundedness of the solution are discussed. The existences and the stability analysis of all possible equilibrium points are studied. suitable Lyapunov functions are used to study the global dynamics of the system. Numerical simulations are also carried out to investigate the influence of certain parameters on the dynamical behavior of the model, to support the analytical results of the model.
The importance of the study stems from the fact that it deals with a very important subject, namely, the pivotal role played by E-banking in achieving the competitive advantage of the banking institutions operating in Algeria. By adopting the banking institution and adopting the elements of the electronic marketing mix and developing it as required by the environment The banking system of developments will inevitably be able to achieve excellence from its competitors as each of these elements have an important role in achieving competitive advantage, we relied in this study on studies and research that directly affect the problem of the study and we have put Estep In order to activate the contribution of e-banking in achieving competitiv
... Show MoreIn this work we run simulation of gas dynamic problems to study the effects of Riemann
problems on the physical properties for this gas.
We studied a normal shock wave travels at a high speed through a medium (shock tube). This
would cause discontinuous change in the characteristics of the medium, such as rapid rise in
velocity, pressure, and density of the flow.
When a shock wave passes through the medium, the total energy is preserved but the energy
which can be extracted as work decreases and entropy increases.
The shock tube is initially divided into a driver and a driven section by a diaphragm. The
shock wave is created by increasing the pressure in the driver section until the diaphragm bursts,
se
The goal of this paper is to study dynamic behavior of a sporadic model (prey-predator). All fixed points of the model are found. We set the conditions that required to investigate the local stability of all fixed points. The model is extended to an optimal control model. The Pontryagin's maximum principle is used to achieve the optimal solutions. Finally, numerical simulations have been applied to confirm the theoretical results.
The rotor dynamics generally deals with vibration of rotating structures. For designing rotors of a high speeds, basically its important to take into account the rotor dynamics characteristics. The modeling features for rotor and bearings support flexibility are described in this paper, by taking these characteristics of rotor dynamics features into standard Finite Element Approach (FEA) model. Transient and harmonic analysis procedures have been found by ANSYS, the idea has been presented to deal with critical speed calculation. This papers shows how elements BEAM188 and COMBI214 are used to represent the shaft and bearings, the dynamic stiffness and damping coefficients of journal bearings as a matrices have been found
... Show MoreThe dependence of the energy losses or the stopping power for the energies and the related penetrating factor are arrive by using a theoretical approximation models. in this work we reach a compatible agreement between our results and the corresponding experimental results.
In this paper, the general framework for calculating the stability of equilibria, Hopf bifurcation of a delayed prey-predator system with an SI type of disease in the prey population, is investigated. The impact of the incubation period delay on disease transmission utilizing a nonlinear incidence rate was taken into account. For the purpose of explaining the predation process, a modified Holling type II functional response was used. First, the existence, uniform boundedness, and positivity of the solutions of the considered model system, along with the behavior of equilibria and the existence of Hopf bifurcation, are studied. The critical values of the delay parameter for which stability switches and the nature of the Hopf bifurcat
... Show More