Soil pH is one of the main factors to consider before undertaking any agricultural operation. Methods for measuring soil pH vary, but all traditional methods require time, effort, and expertise. This study aimed to determine, predict, and map the spatial distribution of soil pH based on data taken from 50 sites using the Kriging geostatistical tool in ArcGIS as a first step. In the second step, the Support Vector Machines (SVM) machine learning algorithm was used to predict the soil pH based on the CIE-L*a*b values taken from the optical fiber sensor. The standard deviation of the soil pH values was 0.42, which indicates a more reliable measurement and the data distribution is normal. The Kriging method gave a prediction accuracy of 65% while the SVM algorithm gave an accuracy of 80%. The root mean square error (RMSE) was 0.36, 0.16 and the mean absolute error (MAE) was 0.37, 0.13, respectively, for the two methods. These two methods allow the prediction of soil pH and thus the assessment of soils, allowing for easier and more efficient management decisions and sustaining productivity.
'Steganography is the science of hiding information in the cover media', a force in the context of information sec, IJSR, Call for Papers, Online Journal
The Purpose of this Research show gap between a Normal Cost System and Resource consumption Accounting Applied in AL-Rafidin Bank.
The Research explores that, how the idle capacity can be determined under resource consumption accounting, discuss the possibility of employing these energies. Research also viewed how costs can be separated into Committee and Attribute. Resource Consumption Accounting assists managers in pricing services or products based on what these services or products use from each Source.
This Research has been proven
<p>Energy and memory limitations are considerable constraints of sensor nodes in wireless sensor networks (WSNs). The limited energy supplied to network nodes causes WSNs to face crucial functional limitations. Therefore, the problem of limited energy resource on sensor nodes can only be addressed by using them efficiently. In this research work, an energy-balancing routing scheme for in-network data aggregation is presented. This scheme is referred to as Energy-aware and load-Balancing Routing scheme for Data Aggregation (hereinafter referred to as EBR-DA). The EBRDA aims to provide an energy efficient multiple-hop routing to the destination on the basis of the quality of the links between the source and destination. In
... Show MoreThe Geographic Information System (GIS) is considered one of the most prominent programs used to collect, analyze, display, process, and produce geographic information maps for a specific purpose. It is also considered one of the modern database programs. Additionally, we can perform statistical analysis within GIS on predefined data to produce quantitative results. In this study, data was collected from more than 80 engineering projects established in Baghdad City from soil investigation reports for the projects. Geographic information systems were used to produce objective maps showing the variation in the bearing capacity of shallow foundations in the soil of Baghdad Governorate. I
An encryption system needs unpredictability and randomness property to maintain information security during transmission and storage. Although chaotic maps have this property, they have limitations such as low Lyapunov exponents, low sensitivity and limited chaotic regions. The paper presents a new improved skewed tent map to address these problems. The improved skew tent map (ISTM) increases the sensitivity to initial conditions and control parameters. It has uniform distribution of output sequences. The programs for ISTM chaotic behavior were implemented in MATLAB R2023b. The novel ISTM produces a binary sequence, with high degree of complexity and good randomness properties. The performance of the ISTM generator shows effective s
... Show MoreIsolated Bacteria from the roots of barley were studied; two stages of processes Isolated and screening were applied in order to find the best bacteria to remove kerosene from soil. The active bacteria are isolated for kerosene degradation process. It has been found that Klebsiella pneumoniae sp. have the highest kerosene degradation which is 88.5%. The optimum conditions of kerosene degradation by Klebsiella pneumonia sp. are pH5, 48hr incubation period, 35°C temperature and 10000ppm the best kerosene concentration. The results 10000ppm showed that the maximum kerosene degradation can reach 99.58% after 48 h of incubation. Higher Kerosene degradation which was 99.83% was obtained at pH5. Kerosene degradation was found to be maximum at 3
... Show More