Stereolithography (SLA) has become an essential photocuring 3D printing process for producing parts of complex shapes from photosensitive resin exposed to UV light. The selection of the best printing parameters for good accuracy and surface quality can be further complicated by the geometric complexity of the models. This work introduces multiobjective optimization of SLA printing of 3D dental bridges based on simple CAD objects. The effect of the best combination of a low-cost resin 3D printer’s machine parameter settings, namely normal exposure time, bottom exposure time and bottom layers for less dimensional deviation and surface roughness, was studied. A multiobjective optimization method was utilized, combining the Taguchi method with response surface methodology and the desirability function technique. The predicted optimal values for the cube’s dimensional deviation and surface roughness were 0.0517 mm and 2.8079 µm, respectively. The experiments’ validation of the findings confirmed the results, which were determined to be 0.0560 and 0.064667 mm and 2.770 and 2.6431 µm for the dimensional deviation and surface roughness for the cube and bridge, respectively. The percentages of prediction errors between the predicted optimum results and the printed response were 7.68% and 1.36% for dimensional deviation and surface roughness, respectively. This study demonstrates that the robust method used produced a dental bridge with good accuracy and a smooth surface.
The azo dye brilliant reactive red K-2BP (λmax = 534 nm) is widely used for coloring textiles because of its low-cost and tolerance fastness properties. Wastewaters treatment that contains the dye by conventional ways is usually inadequate due to its resistance to biological and chemical degradation. During this study, the continuous reactor of an advanced oxidation method supported the use of H2O2/sunlight, H2O2/UV, H2O2/TiO2/sunlight, and H2O2/TiO2/UV for decolorization of brilliant reactive red dye from the effluent. The existence of an optimum pH, H2O2 concentration, TiO2 concentration, and d
... Show MoreIn this paper a modified approach have been used to find the approximate solution of ordinary delay differential equations with constant delay using the collocation method based on Bernstien polynomials.
In this paper, the memorization capability of a multilayer interpolative neural network is exploited to estimate a mobile position based on three angles of arrival. The neural network is trained with ideal angles-position patterns distributed uniformly throughout the region. This approach is compared with two other analytical methods, the average-position method which relies on finding the average position of the vertices of the uncertainty triangular region and the optimal position method which relies on finding the nearest ideal angles-position pattern to the measured angles. Simulation results based on estimations of the mobile position of particles moving along a nonlinear path show that the interpolative neural network approach outperf
... Show MoreThe research is summarized in the construction of a mathematical model using the most common methods in the science of Operations Research, which are the models of transportation and linear programming to find the best solution to the problem of the high cost of hajj in Iraq, and this is done by reaching the optimum number of pilgrims traveling through both land ports and the number Ideal for passengers traveling through airports by Iraqi Airways, instead of relying on the personal experience of the decision-maker in Hajj and Umrah Authority by identifying the best port for pilgrim's travel, which can tolerate right or wrong, has been based on scientific methods of Operations Research, the researcher built two mathematical models
... Show MoreCassava, a significant crop in Africa, Asia, and South America, is a staple food for millions. However, classifying cassava species using conventional color, texture, and shape features is inefficient, as cassava leaves exhibit similarities across different types, including toxic and non-toxic varieties. This research aims to overcome the limitations of traditional classification methods by employing deep learning techniques with pre-trained AlexNet as the feature extractor to accurately classify four types of cassava: Gajah, Manggu, Kapok, and Beracun. The dataset was collected from local farms in Lamongan Indonesia. To collect images with agricultural research experts, the dataset consists of 1,400 images, and each type of cassava has
... Show MoreThe aim of this research is to measure the effect of Adey- Shire model in the achievement and critical thinking of first intermediate female students in mathematics. The researcher adopted the experimental method with a post-test, the research of sample consists of (60) female students, divided into two groups with (30) students in the experimental group, that studied with Adey- Shire model, and (30) students in the control group who studied in the usual way. The two groups are equivalent in many variables. The researcher makes two tests of multiple choices, the first one is an achievement test consists (30) items and another test was for a critical thinking test with (25) items. The statistical analysis make to both tests is made with s
... Show MoreThis work is devoted to study the properties of the ground states such as the root-mean square ( ) proton, charge, neutron and matter radii, nuclear density distributions and elastic electron scattering charge form factors for Carbon Isotopes (9C, 12C, 13C, 15C, 16C, 17C, 19C and 22C). The calculations are based on two approaches; the first is by applying the transformed harmonic-oscillator (THO) wavefunctions in local scale transformation (LST) to all nuclear subshells for only 9C, 12C, 13C and 22C. In the second approach, the 9C, 15C, 16C, 17C and 19C isotopes are studied by dividing the whole nuclear system into two parts; the first is the compact core part and the second is the halo part. The core and halo parts are studied using the
... Show More