Stereolithography (SLA) has become an essential photocuring 3D printing process for producing parts of complex shapes from photosensitive resin exposed to UV light. The selection of the best printing parameters for good accuracy and surface quality can be further complicated by the geometric complexity of the models. This work introduces multiobjective optimization of SLA printing of 3D dental bridges based on simple CAD objects. The effect of the best combination of a low-cost resin 3D printer’s machine parameter settings, namely normal exposure time, bottom exposure time and bottom layers for less dimensional deviation and surface roughness, was studied. A multiobjective optimization method was utilized, combining the Taguchi method with response surface methodology and the desirability function technique. The predicted optimal values for the cube’s dimensional deviation and surface roughness were 0.0517 mm and 2.8079 µm, respectively. The experiments’ validation of the findings confirmed the results, which were determined to be 0.0560 and 0.064667 mm and 2.770 and 2.6431 µm for the dimensional deviation and surface roughness for the cube and bridge, respectively. The percentages of prediction errors between the predicted optimum results and the printed response were 7.68% and 1.36% for dimensional deviation and surface roughness, respectively. This study demonstrates that the robust method used produced a dental bridge with good accuracy and a smooth surface.
In this study, experimental and numerical applied of heat distribution due to pulsed Nd: YAG laser surface melting. Experimental side was consists of laser parameters are, pulse duration1.3
Background: This study aimed to assess the effect of tooth shape ratio on mandibular incisor arrangement. Materials and methods: The sample included dental casts of some dental students and orthodontic patients having Class I dental and skeletal patterns with normal occlusion and severe crowding. The sample was divided into two groups according to the severity of crowding into: group I had Class I normal occlusion with mild or no crowded mandibular dentition and group II had Class I malocclusion with severe crowded mandibular dentition. Each group comprising of 40 subjects (20 males and 20 females). The mesio-distal and facio-lingual crown diameters were measured manually for each cast using modified vernier caliper gauge. Descriptive sta
... Show MoreMedicine is one of the fields where the advancement of computer science is making significant progress. Some diseases require an immediate diagnosis in order to improve patient outcomes. The usage of computers in medicine improves precision and accelerates data processing and diagnosis. In order to categorize biological images, hybrid machine learning, a combination of various deep learning approaches, was utilized, and a meta-heuristic algorithm was provided in this research. In addition, two different medical datasets were introduced, one covering the magnetic resonance imaging (MRI) of brain tumors and the other dealing with chest X-rays (CXRs) of COVID-19. These datasets were introduced to the combination network that contained deep lea
... Show MoreBackground: Implantology is a fast growing area in dentistry. One of the most common issues encountered in dental implantation procedures is the lack of adequate preoperative planning. Conventional radiography may not be able to assess the true regional three-dimensional anatomical presentation. Multi Slice Computed Tomography provides data in 3-dimentional format offering information on craniofacial anatomy for diagnosis; this technology enables the virtual placement of implant in a 3-Dimensional model of the patient jaw (dental planning). Patients, Material and Methods: The sample consisted of (72) Iraqi patients indicated for dental implant (34 male and 38 female), age range between (20-70) years old. They were examined during a time p
... Show MoreIn this study, the stress-strength model R = P(Y < X < Z) is discussed as an important parts of reliability system by assuming that the random variables follow Invers Rayleigh Distribution. Some traditional estimation methods are used to estimate the parameters namely; Maximum Likelihood, Moment method, and Uniformly Minimum Variance Unbiased estimator and Shrinkage estimator using three types of shrinkage weight factors. As well as, Monte Carlo simulation are used to compare the estimation methods based on mean squared error criteria.
Various simple and complicated models have been utilized to simulate the stress-strain behavior of the soil. These models are used in Finite Element Modeling (FEM) for geotechnical engineering applications and analysis of dynamic soil-structure interaction problems. These models either can't adequately describe some features, such as the strain-softening of dense sand, or they require several parameters that are difficult to gather by conventional laboratory testing. Furthermore, soils are not completely linearly elastic and perfectly plastic for the whole range of loads. Soil behavior is quite difficult to comprehend and exhibits a variety of behaviors under various circumstances. As a result, a more realistic constitutive model is
... Show More