Stereolithography (SLA) has become an essential photocuring 3D printing process for producing parts of complex shapes from photosensitive resin exposed to UV light. The selection of the best printing parameters for good accuracy and surface quality can be further complicated by the geometric complexity of the models. This work introduces multiobjective optimization of SLA printing of 3D dental bridges based on simple CAD objects. The effect of the best combination of a low-cost resin 3D printer’s machine parameter settings, namely normal exposure time, bottom exposure time and bottom layers for less dimensional deviation and surface roughness, was studied. A multiobjective optimization method was utilized, combining the Taguchi method with response surface methodology and the desirability function technique. The predicted optimal values for the cube’s dimensional deviation and surface roughness were 0.0517 mm and 2.8079 µm, respectively. The experiments’ validation of the findings confirmed the results, which were determined to be 0.0560 and 0.064667 mm and 2.770 and 2.6431 µm for the dimensional deviation and surface roughness for the cube and bridge, respectively. The percentages of prediction errors between the predicted optimum results and the printed response were 7.68% and 1.36% for dimensional deviation and surface roughness, respectively. This study demonstrates that the robust method used produced a dental bridge with good accuracy and a smooth surface.
An intelligent software defined network (ISDN) based on an intelligent controller can manage and control the network in a remarkable way. In this article, a methodology is proposed to estimate the packet flow at the sensing plane in the software defined network-Internet of Things based on a partial recurrent spike neural network (PRSNN) congestion controller, to predict the next step ahead of packet flow and thus, reduce the congestion that may occur. That is, the proposed model (spike ISDN-IoT) is enhanced with a congestion controller. This controller works as a proactive controller in the proposed model. In addition, we propose another intelligent clustering controller based on an artificial neural network, which operates as a reactive co
... Show MoreIn modern era, which requires the use of networks in the transmission of data across distances, the transport or storage of such data is required to be safe. The protection methods are developed to ensure data security. New schemes are proposed that merge crypto graphical principles with other systems to enhance information security. Chaos maps are one of interesting systems which are merged with cryptography for better encryption performance. Biometrics is considered an effective element in many access security systems. In this paper, two systems which are fingerprint biometrics and chaos logistic map are combined in the encryption of a text message to produce strong cipher that can withstand many types of attacks. The histogram analysis o
... Show MoreThe aim of the current study is to identify the level of goal conflict with twelfth-grade students in South Sharqiah/ Sultanate of Oman according to gender and specialization. The study used the descriptive method. A scale of (28) items was developed and divided into six dimensions: time pressure, goal achievement, limit of power, limit of budget, incompatible strategies, and unclear task. To validate the scale, it was piloted (40) students. The scale was administered to a sample of (402) students (209) males in the Governorate of South Sharqiah. The results showed that the conflict level was high in “unclear task”, and an average conflict level in “limit of power”. Other dimensions (goal achievement, time pressure, limit of powe
... Show MoreFinger vein recognition and user identification is a relatively recent biometric recognition technology with a broad variety of applications, and biometric authentication is extensively employed in the information age. As one of the most essential authentication technologies available today, finger vein recognition captures our attention owing to its high level of security, dependability, and track record of performance. Embedded convolutional neural networks are based on the early or intermediate fusing of input. In early fusion, pictures are categorized according to their location in the input space. In this study, we employ a highly optimized network and late fusion rather than early fusion to create a Fusion convolutional neural network
... Show MoreOne of the most difficult issues in the history of communication technology is the transmission of secure images. On the internet, photos are used and shared by millions of individuals for both private and business reasons. Utilizing encryption methods to change the original image into an unintelligible or scrambled version is one way to achieve safe image transfer over the network. Cryptographic approaches based on chaotic logistic theory provide several new and promising options for developing secure Image encryption methods. The main aim of this paper is to build a secure system for encrypting gray and color images. The proposed system consists of two stages, the first stage is the encryption process, in which the keys are genera
... Show MoreBackground: Prophylaxis methods are used to mechanically remove plaque and stain from tooth surfaces; such methods give rise to loss of superficial structure and roughen the surface of composites as a result of their abrasive action. This study was done to assess the effect of three polishing systems on surface texture of new anterior composites after storage in artificial saliva. Materials and methods: A total of 40 Giomer and Tetric®N-Ceram composite discs of 12 mm internal diameter and 3mm height were prepared using a specially designed cylindrical mold and were stored in artificial saliva for one month and then samples were divided into four groups according to surface treatment: Group A (control group):10 specimens received no surfa
... Show MoreAbstract
Characterized by the Ordinary Least Squares (OLS) on Maximum Likelihood for the greatest possible way that the exact moments are known , which means that it can be found, while the other method they are unknown, but approximations to their biases correct to 0(n-1) can be obtained by standard methods. In our research expressions for approximations to the biases of the ML estimators (the regression coefficients and scale parameter) for linear (type 1) Extreme Value Regression Model for Largest Values are presented by using the advanced approach depends on finding the first derivative, second and third.