Preferred Language
Articles
/
z4a6o4YBIXToZYALKZsQ
Classification of COVID-19 from CT chest images using Convolutional Wavelet Neural Network
...Show More Authors

<p>Analyzing X-rays and computed tomography-scan (CT scan) images using a convolutional neural network (CNN) method is a very interesting subject, especially after coronavirus disease 2019 (COVID-19) pandemic. In this paper, a study is made on 423 patients’ CT scan images from Al-Kadhimiya (Madenat Al Emammain Al Kadhmain) hospital in Baghdad, Iraq, to diagnose if they have COVID or not using CNN. The total data being tested has 15000 CT-scan images chosen in a specific way to give a correct diagnosis. The activation function used in this research is the wavelet function, which differs from CNN activation functions. The convolutional wavelet neural network (CWNN) model proposed in this paper is compared with regular convolutional neural network that uses other activation functions (exponential linear unit (ELU), rectified linear unit (ReLU), Swish, Leaky ReLU, Sigmoid), and the result is that utilizing CWNN gave better results for all performance metrics (accuracy, sensitivity, specificity, precision, and F1-score). The results obtained show that the prediction accuracies of CWNN were 99.97%, 99.9%, 99.97%, and 99.04% when using wavelet filters (rational function with quadratic poles (RASP1), (RASP2), and polynomials windowed (POLYWOG1), superposed logistic function (SLOG1)) as activation function, respectively. Using this algorithm can reduce the time required for the radiologist to detect whether a patient has COVID or not with very high accuracy.</p>

View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Dec 01 2023
Journal Name
Al-khwarizmi Engineering Journal
Working Memory Classification Enhancement of EEG Activity in Dementia: A Comparative Study
...Show More Authors

The purpose of the current investigation is to distinguish between working memory ( ) in five patients with vascular dementia ( ), fifteen post-stroke patients with mild cognitive impairment ( ), and fifteen healthy control individuals ( ) based on background electroencephalography (EEG) activity. The elimination of EEG artifacts using wavelet (WT) pre-processing denoising is demonstrated in this study. In the current study, spectral entropy ( ), permutation entropy ( ), and approximation entropy ( ) were all explored. To improve the  classification using the k-nearest neighbors ( NN) classifier scheme, a comparative study of using fuzzy neighbourhood preserving analysis with -decomposition ( ) as a dimensionality reduction technique an

... Show More
View Publication Preview PDF
Scopus (2)
Scopus Crossref
Publication Date
Tue May 16 2023
Journal Name
International Journal Of Online And Biomedical Engineering (ijoe)
Comparative Study of Anemia Classification Algorithms for International and Newly CBC Datasets
...Show More Authors

Data generated from modern applications and the internet in healthcare is extensive and rapidly expanding. Therefore, one of the significant success factors for any application is understanding and extracting meaningful information using digital analytics tools. These tools will positively impact the application's performance and handle the challenges that can be faced to create highly consistent, logical, and information-rich summaries. This paper contains three main objectives: First, it provides several analytics methodologies that help to analyze datasets and extract useful information from them as preprocessing steps in any classification model to determine the dataset characteristics. Also, this paper provides a comparative st

... Show More
View Publication
Scopus (5)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Tue Jan 01 2019
Journal Name
Energy Procedia
Calculating Surface Roughness for a Large Scale SEM Images by Mean of Image Processing
...Show More Authors

View Publication
Scopus (20)
Crossref (22)
Scopus Clarivate Crossref
Publication Date
Fri Mar 01 2019
Journal Name
Al-khwarizmi Engineering Journal
Implementation of Neural Control for Continuous Stirred Tank Reactor (CSTR)
...Show More Authors

In this paper a dynamic behavior and control of  a jacketed continuous stirred tank reactor (CSTR)  is developed using different control strategies, conventional feedback control (PI and PID), and neural network (NARMA-L2, and NN Predictive) control. The dynamic model for CSTR process is described by a first order lag system with dead time.

The optimum tuning of control parameters are found by two different methods; Frequency Analysis Curve method (Bode diagram) and Process Reaction Curve using the mean of Square Error (MSE) method. It is found that the Process Reaction Curve method is better than the Frequency Analysis Curve method and PID feedback controller is better than PI feedback controller.

The results s

... Show More
View Publication Preview PDF
Publication Date
Tue Jun 01 2021
Journal Name
2021 Ieee/cvf Conference On Computer Vision And Pattern Recognition Workshops (cvprw)
Alps: Adaptive Quantization of Deep Neural Networks with GeneraLized PositS
...Show More Authors

View Publication
Scopus (11)
Crossref (12)
Scopus Clarivate Crossref
Publication Date
Mon Oct 17 2011
Journal Name
Journal Of Engineering
MODIFIED TRAINING METHOD FOR FEEDFORWARD NEURAL NETWORKS AND ITS APPLICATION in 4-LINK SCARA ROBOT IDENTIFICATION
...Show More Authors

In this research the results of applying Artificial Neural Networks with modified activation function to perform the online and offline identification of four Degrees of Freedom (4-DOF) Selective Compliance Assembly Robot Arm (SCARA) manipulator robot will be described. The proposed model of identification strategy consists of a feed-forward neural network with a modified activation function that operates in parallel with the SCARA robot model. Feed-Forward Neural Networks (FFNN) which have been trained online and offline have been used, without requiring any previous knowledge about the system to be identified. The activation function that is used in the hidden layer in FFNN is a modified version of the wavelet function. This approach ha

... Show More
Preview PDF
Publication Date
Sat Oct 01 2011
Journal Name
Journal Of Engineering
MODIFIED TRAINING METHOD FOR FEEDFORWARD NEURAL NETWORKS AND ITS APPLICATION in 4-LINK SCARA ROBOT IDENTIFICATION
...Show More Authors

In this research the results of applying Artificial Neural Networks with modified activation function to
perform the online and offline identification of four Degrees of Freedom (4-DOF) Selective Compliance
Assembly Robot Arm (SCARA) manipulator robot will be described. The proposed model of
identification strategy consists of a feed-forward neural network with a modified activation function that
operates in parallel with the SCARA robot model. Feed-Forward Neural Networks (FFNN) which have
been trained online and offline have been used, without requiring any previous knowledge about the
system to be identified. The activation function that is used in the hidden layer in FFNN is a modified
version of the wavelet func

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Sep 07 2022
Journal Name
2022 Iraqi International Conference On Communication And Information Technologies (iiccit)
Vehicular Ad-hoc Network (VANET) – A Review
...Show More Authors

This paper explores VANET topics: architecture, characteristics, security, routing protocols, applications, simulators, and 5G integration. We update, edit, and summarize some of the published data as we analyze each notion. For ease of comprehension and clarity, we give part of the data as tables and figures. This survey also raises issues for potential future research topics, such as how to integrate VANET with a 5G cellular network and how to use trust mechanisms to enhance security, scalability, effectiveness, and other VANET features and services. In short, this review may aid academics and developers in choosing the key VANET characteristics for their objectives in a single document.

View Publication
Scopus (6)
Crossref (4)
Scopus Crossref
Publication Date
Thu Mar 02 2023
Journal Name
East European Journal Of Physics
Evaluation of the Influence of Body Mass Index and Signal-to-Noise Ratio on the PET/CT Image Quality in Iraqi Patients with Liver Cancer
...Show More Authors

Image quality has been estimated and predicted using the signal to noise ratio (SNR). The purpose of this study is to investigate the relationships between body mass index (BMI) and SNR measurements in PET imaging using patient studies with liver cancer. Three groups of 59 patients (24 males and 35 females) were divided according to BMI. After intravenous injection of 0.1 mCi of 18F-FDG per kilogram of body weight, PET emission scans were acquired for (1, 1.5, and 3) min/bed position according to the weight of patient. Because liver is an organ of homogenous metabolism, five region of interest (ROI) were made at the same location, five successive slices of the PET/CT scans to determine the mean uptake (signal) values and its standard deviat

... Show More
View Publication
Scopus (1)
Scopus Clarivate Crossref
Publication Date
Fri Feb 17 2023
Journal Name
Sustainability
Sustainable Utilization of Machine-Vision-Technique-Based Algorithm in Objective Evaluation of Confocal Microscope Images
...Show More Authors

Confocal microscope imaging has become popular in biotechnology labs. Confocal imaging technology utilizes fluorescence optics, where laser light is focused onto a specific spot at a defined depth in the sample. A considerable number of images are produced regularly during the process of research. These images require methods of unbiased quantification to have meaningful analyses. Increasing efforts to tie reimbursement to outcomes will likely increase the need for objective data in analyzing confocal microscope images in the coming years. Utilizing visual quantification methods to quantify confocal images with naked human eyes is an essential but often underreported outcome measure due to the time required for manual counting and e

... Show More
View Publication
Scopus (4)
Scopus Clarivate Crossref