<p>Analyzing X-rays and computed tomography-scan (CT scan) images using a convolutional neural network (CNN) method is a very interesting subject, especially after coronavirus disease 2019 (COVID-19) pandemic. In this paper, a study is made on 423 patients’ CT scan images from Al-Kadhimiya (Madenat Al Emammain Al Kadhmain) hospital in Baghdad, Iraq, to diagnose if they have COVID or not using CNN. The total data being tested has 15000 CT-scan images chosen in a specific way to give a correct diagnosis. The activation function used in this research is the wavelet function, which differs from CNN activation functions. The convolutional wavelet neural network (CWNN) model proposed in this paper is compared with regular convolutional neural network that uses other activation functions (exponential linear unit (ELU), rectified linear unit (ReLU), Swish, Leaky ReLU, Sigmoid), and the result is that utilizing CWNN gave better results for all performance metrics (accuracy, sensitivity, specificity, precision, and F1-score). The results obtained show that the prediction accuracies of CWNN were 99.97%, 99.9%, 99.97%, and 99.04% when using wavelet filters (rational function with quadratic poles (RASP1), (RASP2), and polynomials windowed (POLYWOG1), superposed logistic function (SLOG1)) as activation function, respectively. Using this algorithm can reduce the time required for the radiologist to detect whether a patient has COVID or not with very high accuracy.</p>
Thirty uropathogenic E. coli isolates were isolated from hospitalized and non hospitalized patients, complaining of urinary tract infections, of Al-Kadhymia Teaching Hospital and subjected to tRNA extraction. A method of tRNA extraction was modified by adding sodium dodecyl sulfate (SDS) instead of urea. Polyacrylamide gel electrophoresis and two methods of staining, ethidium bromide staining and silver staining, as well as spectrophotometric detection were used.
The study aimed at designing compound exercises using added weight on some skill abilities in youth soccer players aged (17 – 19) years old. The researcher sued the experimental method on (30) players aged (17 – 19) years old from Al Zawraa Sport Club. The subjects were divided into three groups and the training program was applied for (8) weeks with (3) training sessions per week. The data was collected and treated using proper statistical operations to conclude that compound exercises with weights between improved the subjects compared to the groups that did not use the added weights. Finally, the researchers recommended the necessity of using compound exercises using added weights during training sessions for youth soccer pla
... Show MoreMany oil and gas processes, including oil recovery, oil transportation, and petroleum processing, are negatively impacted by the precipitation and deposition of asphaltene. Screening methods for determining the stability of asphaltenes in crude oil have been developed due to the high cost of remediating asphaltene deposition in crude oil production and processing. The colloidal instability index, the Asphaltene-resin ratio, the De Boer plot, and the modified colloidal instability index were used to predict the stability of asphaltene in crude oil in this study. The screening approaches were investigated in detail, as done for the experimental results obtained from them. The factors regulating the asphaltene precipitation are different fr
... Show More This research introduced the derivation of mathematical equations to calculate the Cartesian and geographical coordinates of a site situated at a far distance from the observer position by using GPS data. The geographical coordinates (ϕobs., λ obs., hobs.) for observer position were transformed to Cartesian coordinates (X obs., Y obs., Z obs.) of observer position itself. Then the Cartesian coordinates of unknown position mathematically were calculated from these calculated equations, and its transformed to geographical coordinates of (ϕunk., λunk.) position.
The solar radiation plays an important role on the energy balance of the earthatmosphere, which is the main source of energy. Also the solar radiation is a main factor of all applications which use a solar energy as renewable energy source. The purpose of this research is to study the monthly average changes for solar radiation for the period from 1985 to 1989 by using satellite Antenna Alignment from (NASA). The result shows that the monthly average radiation changes from one year to another because of the changing of it component of atmosphere, (gases, clouds and Aerosols) and as an enhancement for this conclusion, we compared the results with the monthly average radiation at clear atmosphere where the change was slig
... Show MoreCurrently, one of the topical areas of application of machine learning methods is the prediction of material characteristics. The aim of this work is to develop machine learning models for determining the rheological properties of polymers from experimental stress relaxation curves. The paper presents an overview of the main directions of metaheuristic approaches (local search, evolutionary algorithms) to solving combinatorial optimization problems. Metaheuristic algorithms for solving some important combinatorial optimization problems are described, with special emphasis on the construction of decision trees. A comparative analysis of algorithms for solving the regression problem in CatBoost Regressor has been carried out. The object of
... Show MoreDrilling deviated wells is a frequently used approach in the oil and gas industry to increase the productivity of wells in reservoirs with a small thickness. Drilling these wells has been a challenge due to the low rate of penetration (ROP) and severe wellbore instability issues. The objective of this research is to reach a better drilling performance by reducing drilling time and increasing wellbore stability.
In this work, the first step was to develop a model that predicts the ROP for deviated wells by applying Artificial Neural Networks (ANNs). In the modeling, azimuth (AZI) and inclination (INC) of the wellbore trajectory, controllable drilling parameters, unconfined compressive strength (UCS), formation
... Show MoreDrilling deviated wells is a frequently used approach in the oil and gas industry to increase the productivity of wells in reservoirs with a small thickness. Drilling these wells has been a challenge due to the low rate of penetration (ROP) and severe wellbore instability issues. The objective of this research is to reach a better drilling performance by reducing drilling time and increasing wellbore stability.
In this work, the first step was to develop a model that predicts the ROP for deviated wells by applying Artificial Neural Networks (ANNs). In the modeling, azimuth (AZI) and inclination (INC) of the wellbore trajectory, controllable drilling parameters, unconfined compressive strength (UCS), formation
... Show More