Commercial, industrial, and military activity, largely in the 19th and 20th centuries, have led to environmental pollution that can threaten human health and ecosystem function, liquid gas petroleum (LPG) products are the major sources of energy for industry and daily life that cause environmental contamination during various stages of production, transportation, refining and use. Screening of bacterial isolate by using clear zone techniques and biomass and optical density. Results revealed that isolate Burkholdaria cepatia showed a high ability for hydrocarbons biodegradation and this isolate identified depending on morphological cultural, gram stain, microscopic features, biochemical tests, and VITEK2 compact. In this study, Burkholdaria cepatia had been examined to degrade hydrocarbons in soil. Such strain which is isolated from petroleum hydrocarbon contaminated soil has the ability to utilize a variety of hydrocarbons substrates. Optimal conditions that include (time, temperature & pH) were studied for hydrocarbons biodegradation by Burkholdaria cepatia, results showed with high growth and hydrocarbons biodegredation. Biodegradation Experiments were carried out in lab scale and the growth of microorganisms was investigated directly and indirectly. Results showed an extent of biodegradation more than 80% can be achieved within 10 days using.
In this study, a proposed process for the utilization of hydrogen sulphide separated with other gases from omani natural gas for the production of sulphuric acid by wet sulphuric acid process (WSA) was studied. The processwas simulated at an acid gas feed flow of 5000 m3/hr using Aspen ONE- V7.1-HYSYS software. A sensitivity analysis was conducted to determine the optimum conditions for the operation of plant. This included primarily the threepacked bed reactors connected in series for the production of sulphur trioxidewhich represented the bottleneck of the process. The optimum feed temperature and catalyst bed volume for each reactor were estimated and then used in the simulation of the whole process for tw
... Show MoreAir stripping for removal of Trichloroethylene (TCE), Chloroform (CF) and Dichloromethane (DCM) from water were studied in a bubble column (0.073 m inside dia. and 1.08 m height with several sampling ports). The contaminated water was prepared from deionized water and VOCs. The presence of VOCs in feed solution was single, binary or ternary components. They were diluted to the concentrations ranged between 50 mg/l to 250 mg/l. The experiments were carried out in batch experiments which regard the bubble column as stirred tank and only gas was bubbled through stationary liquid. In this case transient measurements of VOC concentration in the liquid phase and the measured concentra
... Show MoreMany studied were conducted to evaluate the antihepatotoxic and antioxidant activities of Silybum marianum and proved these actions. The Naturally grown seed in Iraqi-Kurdistan Region also were studied for its chemical contents and biological activities. Vegetable oils occur in various plant parts mainly concentrated in the seeds.
In this study comparison was made between the fatty acid patterns of two plant seeds, Silybum marianum and Nigella sativa. Seed sample of Silybum marianum and Nigella sativa were exposed for extraction and isolation of the fatty acid contents using two different solvents (petroleum ether and n-hexane) at 60-80oC using soxhlet apparatus and the oily extract
... Show MoreIn this study, successive electrocoagulation (EC) and electro-oxidation (EO) processes were used to minimize some of the major pollutants in real wastewater, such as organics (detected by chemical oxygen demand (COD)), and turbidity. The wastewater utilized in the present study was collected from the Midland Refinery Company in Baghdad-Iraq. The performance of the successive batch EC-EO processes was studied by utilizing Graphite and Aluminum (Al) as monopolar anode electrodes and stainless steel (st.st.) as the cathode. The Taguchi experimental design approach was used to attain the best experimental conditions for COD reduction as a major response. Starting from chemical oxygen demand COD of (600 ppm), the effects of current density (C
... Show MoreAn electrocoagulation process has been used to eliminate the chemical oxygen demand (COD) from wastewaters discharged from the Al-Muthanna petroleum refinery plant. In this process, a circular aluminum bar was used as a sacrificial anode, and hallow cylinder made from stainless steel was used as a cathode in a tubular batch electrochemical Reactor. Impacts of the operating factors like current density (5-25mAcm-2), NaCl addition at concentrations (0-2g/l), and pH at values (3-11) on the COD removal efficiency were studied.
Results revealed that the increase in current density increases the COD removal efficiency, whereas an increase
In this study, successive electrocoagulation (EC) and electro-oxidation (EO) processes were used to minimize some of the major pollutants in real wastewater, such as organics (detected by chemical oxygen demand (COD)), and turbidity. The wastewater utilized in the present study was collected from the Midland Refinery Company in Baghdad-Iraq. The performance of the successive batch EC-EO processes was studied by utilizing Graphite and Aluminum (Al) as monopolar anode electrodes and stainless steel (st.st.) as the cathode. The Taguchi experimental design approach was used to attain the best experimental conditions for COD reduction as a major response. Starting from chemical oxygen demand COD of (600 ppm), the effects of current densi
... Show More- coli K12 and B. subtilis 168 were investigated for their cadmium and mercury tolerance abilities. They were developed by UV mutagenesis technique to increase their tolerances either to cadmium or mercury, and their names then were designated depend on the name and concentration of metals. E. coli K12 Cd3R exhibited bioremediation amount of 6.5 mg Cd/g dry biomass cell. At the same time, its wild-type (E. coli K12 Cd3) was able to remove 5.2 mg Cd/g dry biomass cell in treatment of 17 mg Cd /L within 72 hours of incubation at 37 °C (pH=7) in vitro assays. The results show that E.coli K12 Hg 20 was able to remove 0.050 µg Hg/g dry biomass cell
This work is focused on studying the effect of liquid layer level (height above a target material) on zinc oxide nanoparticles (ZnO and ZnO2) production using liquid-phase pulsed laser ablation (LP-PLA) technique. A plate of Zn metal inside different heights of an aqueous environment of cetyl trimethyl ammonium bromide (CTAB) with molarity (10-3 M) was irradiated with femtosecond pulses. The effect of liquid layer height on the optical properties and structure of ZnO was studied and characterized through UV-visible absorption test at three peaks at 213 nm, 216 nm and 218 nm for three liquid heights 4, 6 and 8 mm respectively. The obtained results of UV–visible spectra test show a blue shift accomp
... Show More