Patients infected with the COVID-19 virus develop severe pneumonia, which typically results in death. Radiological data show that the disease involves interstitial lung involvement, lung opacities, bilateral ground-glass opacities, and patchy opacities. This study aimed to improve COVID-19 diagnosis via radiological chest X-ray (CXR) image analysis, making a substantial contribution to the development of a mobile application that efficiently identifies COVID-19, saving medical professionals time and resources. It also allows for timely preventative interventions by using more than 18000 CXR lung images and the MobileNetV2 convolutional neural network (CNN) architecture. The MobileNetV2 deep-learning model performances were evaluated using precision, sensitivity, specificity, accuracy, and F-measure to classify CXR images into COVID-19, non-COVID-19 lung opacity, and normal control. Results showed a precision of 92.91%, sensitivity of 90.6, specificity of 96.45%, accuracy of 90.6%, and F-measure of 91.74% in COVID-19 detection. Indeed, the suggested MobileNetV2 deep-learning CNN model can improve classification performance by minimising the time required to collect per-image results for a mobile application.
Background: COVID-19 is a disease that started in Wuhan/China in late 2019 and continued through 2020 worldwide. Scientists worldwide continue to research to find vaccines, treatments, and medication for this disease. Studies also conenue to find the pathogenicity and epidemiology mechanisms. Materials and Methods: In this work, we analyzed cases obtained from Alshifaa center in Baghdad/Iraq for 23/2/2020-31/5/2020 with total instances of 797, positive cases of 393, and death cases of 30. Results: Results showed that the highest infection cases were among people aged between 41-45. Also, it was found that males' number of cases was more than females. In contrast, death cases were significantly higher in males than females. It was not
... Show MoreThe current research aims to analyze the role of participatory budgeting in improving performance, especially during crises such as the Covid-19 crisis. The research used the descriptive analytical method to reach the results by distributing 100 questionnaires to a number of employees in Iraqi joint stock companies and at multiple administrative levels. The research came to several important conclusions, the most important of which is that the bottom-up approach to budgeting produces more achievable budgets than the top-down approach, which is imposed on the company by senior management with much less employee participation. Additionally, there is a better information flow from the lower levels of the organization to the upper management
... Show MoreThe global health crisis resulting from the spread of the Corona virus, which the World Health Organization described on January 30, 2020 as a public health emergency of international concern, then returned to describe it as a pandemic on March 11, 2020, and the measures and procedures taken by government authorities in different countries of the world, whether at the highest level of imposing a comprehensive curfew or what is called globally home quarantine and thus disrupting all sectors and activities in the state, whether public or private (with the exception of some sectors such as the health, media and security sectors), or at a lower level than that, such as reducing work rates in different sectors by rates that vary from one country
... Show MoreThe post-Corona Covid-19 world is not the world before it, the problem of perception of personality traits with two axes: the characteristics of psychological and social compatibility, and the second aspect the mental disorder during the pandemic, and the accompanying precautions and prohibitions during the academic year 2020 AD. The aim of the research is to reveal the perception of the personal characteristics of Bisha University employees (students and faculty) during the Corona Covid-19 pandemic, and to reveal statistically significant differences in the perception of the personality traits of Bisha’s members during the Covid 19 according to the scientific qualification variables (female students -faculty members), marital st
... Show More<p>Analyzing X-rays and computed tomography-scan (CT scan) images using a convolutional neural network (CNN) method is a very interesting subject, especially after coronavirus disease 2019 (COVID-19) pandemic. In this paper, a study is made on 423 patients’ CT scan images from Al-Kadhimiya (Madenat Al Emammain Al Kadhmain) hospital in Baghdad, Iraq, to diagnose if they have COVID or not using CNN. The total data being tested has 15000 CT-scan images chosen in a specific way to give a correct diagnosis. The activation function used in this research is the wavelet function, which differs from CNN activation functions. The convolutional wavelet neural network (CWNN) model proposed in this paper is compared with regular convol
... Show MoreBackground: The SARS-CoV-2 virus causes COVID-19, a respiratory syndrome. It causes inflammation and damages several organs in the body. miRNAs play a role in regulating the infection resulting from SARS-CoV-2. MicroRNA-155, a kind of microRNA linked to viral defences, can affect the immune responses during COVID-19. Objectives: Examination of the involvement of microRNA-155 in the development and severity of COVID-19, as well as finding the correlation between microRNA-155 and viral load (copies/mL) in severe cases of the disease. Materials and Method: A case-control research study was performed between October 2022 and June 2023. It included a cohort of 120 hospitalised individuals with severe cases of COVID-19, together with 115 individu
... Show MoreThis study aims to find the chemosensitive dysfunction incidence in COVID-19-positive patients and its recovery.
We collected the data from sixty-five patients, all COVID-19 positive, quarantined in-hospital between 5 April 2020 and 17 May 2020, by a questionnaire distributed in the quarantine ward.
Smell dysfunction appeared in 89.23% with or without other symptoms of COVID-19. 39.66% of them recovered the sense of smell. Taste dysfunction found in 83.08% patients with other COVID-19 symptoms. Only 29.63% of them recovered. The recovery took 1–3 weeks, and most
The intelligent buildings provided various incentives to get highly inefficient energy-saving caused by the non-stationary building environments. In the presence of such dynamic excitation with higher levels of nonlinearity and coupling effect of temperature and humidity, the HVAC system transitions from underdamped to overdamped indoor conditions. This led to the promotion of highly inefficient energy use and fluctuating indoor thermal comfort. To address these concerns, this study develops a novel framework based on deep clustering of lagrangian trajectories for multi-task learning (DCLTML) and adding a pre-cooling coil in the air handling unit (AHU) to alleviate a coupling issue. The proposed DCLTML exhibits great overall control and is
... Show More